- 1. $m \angle D = 30^{\circ} \quad m \angle AED = 90^{\circ}$ $D = 2(AE) = 2r \quad BD = 3r$ $6^{2} = 3r(r) = 3r^{2}, r = 2\sqrt{3}, 3r = 6\sqrt{3}$
- 2. DF = EF = 15 CF = x, BF = 34 x $15^2 = x(34 - x)$ $x^2 - 34x + 225 = 0$ (x - 9)(x - 25) = 0 smallest is x = 9

- 3. By the Pythagorean Theorem, $BC = 4\sqrt{2}$. Area of sector $= \frac{90}{360}\pi(4)^2 = 4\pi$ Area of $\Box ABC = \frac{1}{2}(4)(4) = 8$, Area of segment $= 4\pi - 8$
- 4. CD = BE = 2 AE = 5 $CE^{2} = 144$, $CE^{2} + 5^{2} = 13^{2}$ CE = BD = 12 $CE^{2} + 25 = 169$

5. $(x-4)^2 + (y+8)^2 = r^2$ Therefore, $80 - r^2 = -20$ $x^2 - 8x + 16 + y^2 + 16y + 64 = r^2$ $r^2 = 100$ $x^2 + y^2 - 8x + 16y + (80 - r^2) = 0$ r = 106 y + 6y + 8y = 360 $m \angle C = \frac{1}{2}(6y - y) = \frac{1}{2}(5y) = \frac{5y}{2} = \frac{5}{2}(24) = 60$

$$15y = 360$$
 $y = 24$

7. Let CD = 8, AB = 12, AC = 30, AE = x, CE = 30 - x; $\triangle ABE \sim \triangle CDE, \frac{12}{x} = \frac{8}{30 - x}, 20x = 360, x = 18, 30 - x = 12.$ Applying the Pythagorean Theorem: $(BE)^2 + 144 = 324.$ BE = $6\sqrt{5}$ $8^2 + (DE)^2 = 12^2, DE = 4\sqrt{5}, BD = 10\sqrt{5}.$

8. The five arcs are congruent and each measures $\frac{360}{5} = 72$. $m \angle CEG = \frac{1}{2}m \overrightarrow{CFE} =$

$$\frac{1}{2}(3)(72) = 108 \ m\angle ECF = \frac{1}{2}mEF = \frac{1}{2}(72) = 36 \qquad m\angle CEG + m\angle ECF = 108 + 36 = 144$$

9. Solution: Radii \overline{AB} and \overline{CD} are \perp to \overline{BD} . Draw $\overline{CE} \perp \overline{AB}$. In 30, 60, 90 rt $\Box ACE$, $CE = 4\sqrt{3}$, $\therefore BD = 4\sqrt{3}$ Area of rectangle CDBE = $(2)(4\sqrt{2}) = 8\sqrt{3}$ Area of triangle ACE = $\frac{1}{2}(4)(4\sqrt{3}) = 8\sqrt{3}$ Area of ABDC = $8\sqrt{3} + 8\sqrt{3} = 16\sqrt{3}$

12. Solution: FE = 11 because tangents to a circle from an exterior point are equal.

13. Since these are chords intersecting inside the circle,

$$(x=1)(7) = 3(x+4),$$
 $4x = 5,$ $x = \frac{5}{4}.$
14. Solution: $m \angle D = \frac{1}{2}(160) = 80^{\circ},$ $m \angle FEB = 80^{\circ},$ $mBC = mBE = 120^{\circ},$
 $mBC = 360 - (120 + 120 + 40) = 80$ $m \angle F = \frac{1}{2}(80 - 40) = 20$

National MAO 2009

Solutions

15. Solution: Area of triangle = $\frac{1}{2}(9)(6\sqrt{3}) = 27\sqrt{3}$

16. $m \angle DBC = 90^\circ - 40^\circ = 50^\circ$, $\Box DBC$ is isosceles, $\therefore \angle D = 180^\circ - (50^\circ + 50^\circ) = 80^\circ$

17. Solution:
$$30 = \frac{1}{2} (150 - mBE)$$
, $60 = 150 - mBE$, $mBE = 90$,
 $m \angle CGD = \frac{1}{2} (150 + 90) = \frac{1}{2} (240) = 120$

- 18. Solution: Since the angle between 2 tangents and the central angle are supplementary, m∠BAC = 124°, and the inscribed angle, m∠BEC = 62°, □ BAE ≅ CAE, and m∠BEA = 31°, ∴ by ≅ angles of a isosceles □, m∠ABE = 31°
- 19. Let the radius of the circumscribed circle be r, and the area of the circumscribed circle is πr^2 . The triangle is a 45-45-90 triangle and the radius of the inscribed triangle is $\frac{r}{\sqrt{2}}$ and the area of the inscribed circle is $\frac{\pi r^2}{2}$. The ratio is $\frac{\pi r^2}{\frac{\pi r^2}{2}} = \frac{2}{1}$
- 20. Solution:

 $\angle BAD = 30^{\circ}$ by symmetry. Let E be the midpoint of AB. DA and DB are radii of Circle B and are \cong . \therefore $\Box ABD$ is isosceles and $\Box ADE$ is a 30, 60, 90 \Box , side opp. the 60° $\angle = \frac{1}{2}$ and the hypotenuse $= \frac{\sqrt{3}}{3}$.

21. These are rt. triangles, since they are inscribed in semicircles. The upper triangle has a 2nd leg of 13 by the Pythagorean theorem and the 2nd leg of the lower triangle is 11. The combined areas are 1/2(1)(13) + 1/2(7)(11) = 13/2 + 77/2 = 90/2 = 45.
22. Let the radius of Circle A be r. (15+r)(15-r) = 4(14), 225-r² = 56, r² = 169, r = 13, 15-13 = 2

23. $y^2 = x^2 - 1$, $y^2 = 12^2 - (x+1)^2$, $x^2 - 1 = 12^2 - x^2 - 2x - 1$ $2x^2 + 2x - 144 = 0$, $x^2 + x - 72 = 0$, (x+9)(x-8) = 0 x = 8 is usable, $y^2 = 64 - 1 = 63$, $y = \sqrt{63} = 3\sqrt{7}$, perimeter $= 12 + 12 + 2(3\sqrt{7}) = 24 + 6\sqrt{7}$

24. The path makes 4 quarter circles of radius = 2 at the corners and contains four sides of a square that has sides of 5. the length of the path = $2\pi(2) + 4(5) = 4\pi + 20$

25.
$$14^2 = 6^2 + (CH)^2$$
, $160 = (CH)^2$, $CH = 4\sqrt{10}$
by $\Box \Box s$, $\frac{DE}{DE + 4\sqrt{10}} = \frac{4}{10}$
 $4DE + 16\sqrt{10} = 10DE$, $6DE = 16\sqrt{10}$
 $DE = \frac{16\sqrt{10}}{6} = \frac{8\sqrt{10}}{3}$

26. Solution: $10 + 2x = 26 \implies 2x = 16 \implies x = 8$ The coordinates of C are (8, 24 + 18) or (8,42)The coordinates of A are (18,18)

27. The center of the circle is (2,-3). The slope of the radius to (8, -8) is $m = \frac{-8+3}{8-2} = \frac{-5}{6}$.

The slope of the tangent at $(8, -8) = \frac{6}{5}$. The equation of the tangent is $(y+8) = \frac{6}{5}(x-8) \implies y = \frac{6}{5}x - \frac{88}{5}$

28. The grazing area consists of $\frac{3}{4}$ of a circle with radius 100 and

$$2\left(\frac{1}{4} \text{ of circle of radius } 20\right) \Longrightarrow A = \frac{3}{4}(\pi)(10000) + \frac{1}{2}(\pi)(400) = 7700\pi$$

National MAO 2009

Solutions

Theta Circles

29. Solution: $x^2 + 12^2 = (x+5)^2 \implies x^2 + 144 = x^2 + 10x + 25 \implies 10x = 119 \qquad x = 11.9 \implies x+5 = 16.9$

30. From every point of the n points an arc can be named to n-1 points, but a major and minor arc can be named in each case.

So, there are
$$2\frac{n(n-1)}{2} = n(n-1)$$

Tiebreaker 1:
$$m \angle MTR = 21$$
, $m\Theta L = 42$, $m \angle NQT = \frac{1}{2}(138 - 42) = \frac{1}{2}(96) = 48$. $mFN = 48$, $mMN = 180 - 42 - 48 = 90$

Tiebreaker 2.

Using the common tangent procedure, by inscribed angles, $mPR = 86^{\circ} \Rightarrow$ $m \angle PAR = 86 \Rightarrow m \angle ZOA = 4^{\circ} \Rightarrow$ $m \angle ROT = 90^{\circ} + 4^{\circ} = 94^{\circ}$ $m \angle S = \frac{1}{2}(94) = 47^{\circ}$

Tiebreaker 3. In the smaller circle, $70 = \frac{1}{2} \left(mBD + 20 \right) \Rightarrow \frac{1}{2} mBD = 60 \Rightarrow mBD = 120.$ In the larger circle, $70 = \frac{1}{2} \left(160 - mBD \right) \Rightarrow 140 = 160 - mBD \Rightarrow mBD = 20$ $\therefore 120 - 20 = 100$

