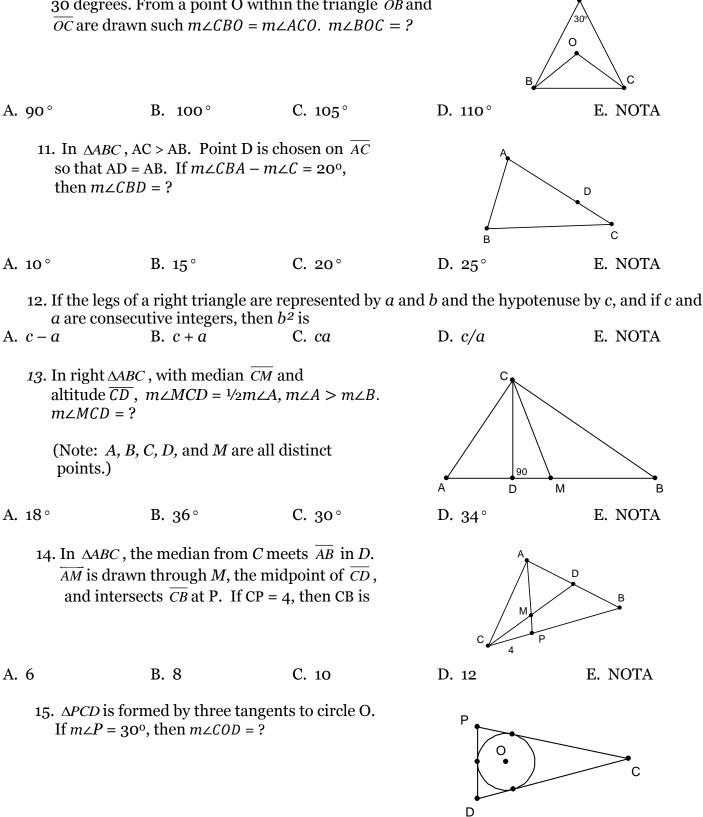
2009 Triangle Topic Test (Theta)

1. Find the are A. 60	a of a triangle whose B. 96√33	e sides are 10, 12, and C. 30	l 14. D. 24√6	E. NOTA		
2. The legs of a right triangle are 5 and 10, while the hypotenuse of a similar triangle is 15. What is the area of the larger triangle?						
A. 90	B. $15 + 9\sqrt{5}$	Č. 45	D. 25	E. NOTA		
3. The area of $\triangle ABC$ is 112 and its altitude to \overline{AB} is 4. Find the length of the median to \overline{AB} if its projection on \overline{AB} is 3.						
A. $112\sqrt{3}$	B. 5	C. 5√7	D. 100	E. NOTA		
4. $\triangle ABC$ has an area of 240 square inches. AB = 20 inches. Find the area of the trapezoid formed when a line is drawn parallel to \overline{AB} and 8 inches from <i>C</i> .						
A. $\frac{640}{3}$	B. $\frac{80}{3}$	C. 160	D. $20\sqrt{3}$	E. NOTA		
5. The area of a circle circumscribed about an equilateral triangle is 196 π square inches. Find the altitude of the triangle.						
A. 14	B. 21	C. 36	D. 196	E. NOTA		
		s drawn parallel to <i>Ā</i> PQ is equal to one thi C. 8√3				
7. In a triangle whose sides are 6, 7, 8, determine the longer of the two segments into which the bisector of the largest angle divides the opposite side.						
A. $\frac{16}{3}$	B. $\frac{48}{13}$	C. $\frac{8}{3}$	D. $\frac{56}{13}$	E. NOTA		
8. $\triangle ABC$ has sides of length 4, 5, and 6. If $\triangle A'B'C'$ is similar to $\triangle ABC$ but has three times the area, find the perimeter of $\triangle A'B'C'$.						
A. 21	B. $9\sqrt{3}$	C. $15\sqrt{3}$	D. 45	E. NOTA		
are 44 and 5 measure of 1 (non-overla	e measures of $\angle BAC$ 8 degrees respective the largest of the pping) angles forme bisectors of the $\angle A$,	ely. Find the d by the	B	c		

A. 72°


B. 36°

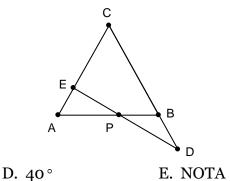
E. NOTA

2009 Triangle Topic Test (Theta)

10. In isosceles $\triangle ABC$, AB = AC and measure of angle A is 30 degrees. From a point O within the triangle \overline{OB} and \overline{OC} are drawn such $m \angle CBO = m \angle ACO$. $m \angle BOC = ?$

A. 105°

D. 60°


medians to t	an isosceles triangle the legs intersect at 1 area of the given tria	$\sqrt{2}$				
A. 1.5	B. 5	C. 2.5	D. 3	E. NOTA		
17. The median A. 524	s of a triangle are 30 B. 554	inches, 30 inches an C. 576	d 48 inches. The area D. 596	of the triangle is E. NOTA		
18. If the hypotenuse of an isosceles right triangle is 10 find the length of the altitude to the hypotenuse.						
A. $5\sqrt{2}$	B. $5\sqrt{3}$	C. $2\sqrt{2}$	D. $3\sqrt{2}$	E. NOTA		
19. The hypotenuse of a right triangle is 25. If the altitude from the right angle to the hypotenuse is 12, what is the length of the longest segment it forms on the hypotenuse?						
A. 8	B. 15	C. 16	D. 20	E. NOTA		
20.The triangle A. scalene	with vertices (-2, 1) B. equilateral		D. right	E. NOTA		
21. In $\triangle ABC$, AB = 7, BC = 8, and AC = 5. Find the projection of \overline{BC} upon \overline{CA} .						
A. 2	B. 4	C. 6	D. 8	E. NOTA		
A. $\frac{39\sqrt{3}}{2}$	f a triangle are 6 ft an B. $\frac{55\sqrt{3}}{2}$	nd 10 ft with an inclu C. $45\sqrt{3}$	ded angle of 120°. Fin D. $15\sqrt{3}$	id its area. E. NOTA		
23. What is the A. 25	radius of a circle ins B. 20	cribed in a triangle w C. 15	hose sides measure 50 D. 10	, 30, and 40? E. NOTA		
 24. Right △ABC has legs of 3" and 4". The locus of points equidistant from the sides of the triangle is a point whose distance from the sides is A. 1" B. 2" C. 2.5" D. 3" E. NOTA 						
	sectors of a triangle B. circumcenter	are concurrent in a p C. orthocenter	-	E. NOTA		

26. $\triangle ABC$ has an area of 40 sq. in. Side AB = 10" and is fixed in position. The locus of *C* is a A. \perp bisector B. \angle bisector C. line || to \overline{AB} D. set of lines || to E. NOTA \overline{AB}

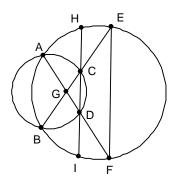
27. The radius of a circle inscribed in equilateral
$$\triangle ABC$$
 whose side is 6 inches is equal to
A. $\frac{2}{3}\sqrt{3}$ B. $\frac{1}{3}\sqrt{3}$ C. $\sqrt{3}$ D. $\frac{1}{2}\sqrt{3}$ E. NOTA

28. Fixed points *A* and *B* are 10" apart. Point P moves so that $\overline{PA} \perp \overline{PB}$. The locus of P is a A. \odot radius 10" B. \bigcirc radius 5" C. \angle bisector D. \perp bisector E. NOTA

29. In the adjacent sketch, $m \angle CDE = 20^{\circ}$. Find $m \angle A$ if CB = CA; *P* is any point on \overline{AB} ; \overline{CB} is extended to *D* so that BD = BP and \overline{DP} extended meets \overline{AC} in *E*.

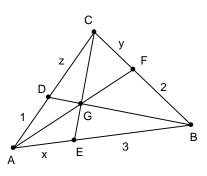
30. In
$$\triangle ABC$$
 $b = 10, c = 6$, and $m \angle A = 150^{\circ}$, find a .
A. $2\sqrt{21}$ B. $\frac{61}{3}$ C. $\frac{97}{10}$ D. 16 E. NOTA

C. 60°


Tiebreaker #1

A. 100°

Quadrilateral ABCD has its vertices on a circle. $m \angle B = 3x + 25$; $m \angle D = 3x + 35$; $m \angle D = 7x + 15$; Find the measure of the largest angle in triangle $\triangle BCD$.


Tiebreaker#2 Given that $\overline{HI} \parallel \overline{EF}$; $m \ arc \ EF = 160^{\circ}$; $\overline{GC} \cong \overline{GD}$, $m \ arc \ HI = 150^{\circ}$ and $m \angle ECD = 142^{\circ}$, find $m \angle AGE$

B. 80°

Tiebreaker#3

 \overline{AF} , \overline{BD} , and \overline{CE} are concurrent line segments in the given figure. Find the value of $\frac{x}{y}(z)$.

