

Solutions

1.	$Area = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{18(8)(6)(4)} = 24\sqrt{6}$	D
2.	Hypotenuse of first right triangle = $\sqrt{5^2 + 10^2} = \sqrt{125} = 5\sqrt{5}$. Finally, $\frac{5\sqrt{5}}{15} = \frac{\sqrt{5}}{3}$, which means that the ratio of the areas is $\left(\frac{\sqrt{5}}{3}\right)^2$	
	$\frac{A_1}{A_2} = \frac{\frac{1}{2}(5)(10)}{A_2} = \frac{25}{A_2}; \qquad \frac{25}{A_2} = \frac{5}{9}; \qquad A_2 = \frac{(25)(9)}{5} = 45$	9, C
2	$A_2 - A_2 - A_2 - A_2 - A_2 - 9$, $A_2 - 9$, $A_2 - 5 - 43$	~
3.	Area of the triangle is irrelevant. The projection, altitude, and median form a right triangle whose legs are the projection and altitude, lengths 3 and 4 respectively. The median is the hypotenuse which must be length 5.	A 3 B
4.	$area = \frac{1}{2}bh; \ 240 = \frac{1}{2}(20)h; \ h = 24$	C C
	$\triangle CDE \square \triangle CAB$ with ratio $\frac{8}{24} = \frac{1}{3}$. Ratio of areas $\left(\frac{1}{3}\right)^2 = \frac{1}{9}$	D 8 E 16
	Therefore the area of the trapezoid ABED is $\frac{8}{9}$ the area of triangle ABC. $\frac{8}{9}(240) = \frac{8}{3}(80) = \frac{640}{3}$ A	A 20 B
5.	$A = \pi r^{2}$ $196\pi = \pi (2x)^{2}$	$2x$ $2x\sqrt{3}$
	$196\pi = \pi (4x^2)$ $\sqrt{49} = 7 = x$ B	x 2x
	3x = 21	x.√3
6.	$\frac{area\Delta CPQ}{area\Delta CAB} = \left(\frac{PQ}{AB}\right)^2 = \left(\frac{1}{3}\right) \Rightarrow \frac{PQ}{AB} = \frac{1}{\sqrt{3}} \qquad C$	C Q
	$\frac{PQ}{24} = \frac{1}{\sqrt{3}} \Longrightarrow PQ = \frac{24}{\sqrt{3}} = 8\sqrt{3}$	P 24 B
		A

7.	$\frac{7}{6} = \frac{8-x}{x} \Rightarrow 7x = 48 - 6x \Rightarrow 13x = 48 \Rightarrow x = \frac{48}{13}$ $8 - x = \frac{56}{13}$	D 7 6 8-x x
8.	Perimeter of triangle ABC is 15. $\frac{A_{\rm l}}{A_{\rm 2}} = \left(\frac{perimeter_{\rm l}}{perimeter_{\rm 2}}\right)^2 = \left(\frac{1}{3}\right) \Rightarrow \frac{perimeter_{\rm l}}{perimeter_{\rm 2}} = \frac{1}{\sqrt{3}} \Rightarrow \frac{14}{perimeter_{\rm 2}}$	$\frac{5}{beter_2} = \frac{1}{\sqrt{3}} \Rightarrow perimeter_2 = 15\sqrt{3}$ C
9.	Given that $m\square BAC = 44^{\circ}$ and $m\square ABC = 58^{\circ}$ it follows that $m\square ACB = 78^{\circ}$ and $39^{\circ} + x + 58^{\circ} = 180^{\circ}$ and $x = 83^{\circ}$ $x = y + 22^{\circ} \Longrightarrow 83^{\circ} = y + 22^{\circ} \implies y = 61^{\circ}$ $z = 180^{\circ} - 29^{\circ} - 78^{\circ} = 73^{\circ}$ $z = w + 22^{\circ} \Longrightarrow 73^{\circ} = w + 22^{\circ} \implies w = 51^{\circ}$ $w + y + t = 180^{\circ} \Longrightarrow 51^{\circ} + 61^{\circ} + t = 180^{\circ} \implies t = 68^{\circ}$ D	A F $Z^{22^{\circ}}$ Z^{22°
10.	Since $\triangle ABC$ is isosceles, its base angles are each 75° $x + y = 75^\circ = m\Box ABC = m\Box ACB$ $x + y + m\Box BOC = 180^\circ$ substition gives $75^\circ + m\Box BOC = 180^\circ$ $m\Box BOC = 180 - 75 = 105^\circ$	A 30° O B x y C
11.	x + y - C = 20 and y = x + C (Exterior angle = sum orremote interior angles) Substituting x + C for y in the first equation gives x + x + C - C = 20 2x = 20 x = 10 A	of A D D C C
12.	$a^{2} + b^{2} = c^{2} (note: c = a + 1)$ $b^{2} = c^{2} - a^{2} = (a + 1)^{2} - a^{2} = a^{2} + 2a + 1 - a^{2} = 2a + 1$ a + c	=2a+1 B

10		1
13.	Given right $\triangle ABC$ with $m \square MCD = \frac{1}{2}m \square A$ $MA = MC = MB$, (radii of the circle our \triangle can be inscribed in) meaning that \triangle AMC is isosceles. Since base angles of an isosceles triangle are congruent, $m \square$ MCA must = 2x and $m \square$ DCA = x. Since \square BMC is an exterior angle to \triangle AMC and \triangle DMC the following equation is true. $2x + 2x = 90 + x = m \square$ BMC $3x = 90$ and $x = 30$. C	A D M B
14.	As seen in the sketch extending AC its own length to H so that C is a midpoint and drawing BH creates triangle ABH. Draw triangle formed by the mid-segments of triangle ABH. The centroid of the mid-segment triangle is also the centroid of the original triangle. (Median of Triangle always contains midpoint of mid segment that it intersects.) Therefore P is the centroid of both triangle ABH and CDG. And therefore PB = 8 and CB = 12. D	C A B N B G H
15.	2x + 2y + 150 = 360 2x + 2y = 210 x + y = 105 A	$ \begin{array}{c} P \\ 30 \\ 90 \\ 90 \\ 150 \\ y \\ C \\ D \\ \end{array} $
16.	Altitude (Median) to base bisects the 90 degree angle formed by medians to form two congruent 45-45-90 triangles along the base. Area $= \frac{\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2} + \sqrt{2} \right) = \frac{\sqrt{2}}{2} \left(\frac{3\sqrt{2}}{2} \right) = \frac{3(2)}{4} = \frac{3}{2}$ A	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$

2009 Triangle Topic Test (Theta)

31. TB1	3x + 35 + 7x + 15 = 180 and $x = 134x + 35 + C = 18052 + 35 + C = 180and C = 93^{\circ} which must be the measure of the largestangle in triangle BCD$	3x+35 B 4x+35 A D 7x+15
32. TB2	$m\Box AGE = sum remote angles = 76^{\circ}$	H G G H H H H H H H H H H H H H H H H H
33. TB3	By Ceva's Theorem (x)(2)(z) = (3)(y)(1) and then $\frac{(x)(z)}{(y)} = \frac{3}{2}$	C C F C C F C C F C C F C C F C C C C C C C C C C