Question #0

Mu Ciphering 2010 MA⊖ National Convention

Evaluate:
$$\int_{0}^{1} 2x(1-x^{2})^{10} dx$$

Question #1

Mu Ciphering 2010 MA⊕ National Convention

Let
$$f(x) = \sum_{n=1}^{\infty} x^n$$
 for $|x| < 1$. Find

the maximum value of $\frac{f(x)}{f'(x)}$.

Question #2

Mu Ciphering 2010 MA⊕ National Convention

Given that
$$\lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^n = e^a$$
, let

$$f(x) = \lim_{n \to \infty} \left(\frac{n + 0.5 \sin(2x)}{n} \right)^{n \tan(x)}.$$

Find
$$f'\left(\frac{\pi}{6}\right)$$
.

Question #3

 $\begin{array}{l} \text{Mu Ciphering} \\ \text{2010 MA} \\ \text{O} \\ \text{National Convention} \end{array}$

Giulio and Gerardo are at the origin and decide to part ways. Gerardo walks along the y-axis at 0.4 m/s and Giulio along the x-axis at 0.2 m/s. After one **minute**, at what rate is the distance between them increasing in meters per second?

Question #4

Mu Ciphering 2010 MAΘ National Convention

A triangle has vertices at (0, 0), $(a^2 + 1, 0)$, and $(3a^3 - a^2 + 2a - 4, 5)$. If a is increasing at 3 units/sec, find the rate of change of the triangle's area when a = 6.

Question #5

Mu Ciphering 2010 MA⊕ National Convention

If
$$\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} x^3 e^{x^2} dx = A \ln 3 + B \ln 2 + C$$
,

where A, B, and C are integers, find A + B + C.

Question #6

Mu Ciphering 2010 MA⊕ National Convention

The smallest prime factor of 2001 is A. The largest prime factor of 2001 is B. Find A+B.

Question #7

 $\begin{array}{l} \text{Mu Ciphering} \\ \text{2010 MA} \\ \text{O} \\ \text{National Convention} \end{array}$

If
$$3x^2 + xy^2 - y^3 \cos(x) + 8 = 0$$
,
find $\frac{dy}{dx}$ at the point (0, 2).

Question #8

Mu Ciphering 2010 MA⊕ National Convention

Using L'Hopital's Rule once, compute

$$\lim_{x\to 0^+} \left[\left(1 - \cos(x)\right)^{-1/2} \int_0^{\sin(3x)} e^{2t} dt \right].$$

Question #9

Mu Ciphering 2010 MA⊕ National Convention

Every day I pay one dollar to roll a pair of dice. If both dice land on 6, then I get k dollars and never play this game again. If I don't win, then I play again the next day. If my expected winnings for this game are zero, what is k? Assume my immortality.

Question #10

Mu Ciphering 2010 MA⊕ National Convention

Suppose n people, including Ms. Herron, leave their hats at the door when entering a party. These same n people go to a party for n days in a row. Because of the vast quantity of people, however, each one simply takes a random hat each night when they leave the party. Let P(n) denote the probability that Ms. Herron never leaves a party with the same hat that she brings. Find $\lim_{n \to \infty} P(n)$.