ANSWERS:

1.	1	6. $\frac{1}{32}$	11. 6	16. $\frac{1}{k}$	21. $\frac{11}{6}$
2.	$\frac{1}{2}$	7. $-\frac{\sqrt{2}}{4}$	12. 1	17. $-\frac{1}{3}$ *	22. $-\frac{3}{8}$
3.	-1	8. 48	13. 4	18. 26	23. 16
4.	-5	91	14. 5	19. 5	24. 4
5.	-1	10. 4	15. $\frac{1}{4}$	20. $\frac{7}{3}$	25. $-\frac{1}{2}$

* one value only.

SOLUTIONS:

- 1. f"= 12x 3 > 0 for x>0.25, and the least integer is 1.
- 2. $\int_{0}^{\pi/4} \sec^2 x \tan x \, dx = \int u \, du \text{ for u=tanx. } \frac{1}{2} \tan^2 x \, \bigg| \frac{\pi/4}{0} = \frac{1}{2} (1-0) = 1/2.$
- 3. f= $\sqrt{(x-1)^2} = |x-1|$, and the slope to the left of the cusp is -1.
- 4. The derivative of $y = 2x^2 + 3x$ is 4x+3. At x= -2, the derivative is -5.
- 5. $2xe^{2x} + x^2(2e^{2x}) < 0$, $2xe^{2x}(1+x) < 0$. Between x=0 and x=-1 this is true, and so a= -1. 6. $\frac{dy}{dt} = 8x\frac{dx}{dt}$, $\frac{dy}{dt} = 8x\left(4\frac{dy}{dt}\right)$. This is true for x= 1/32.
- 7. $f' = \frac{1}{2}(9-x^2)^{-1/2}(-2x)$ and at $x = 2\sqrt{2}$, $f' = -2\sqrt{2}$. so $g'(1) = 1/f'(2\sqrt{2}) = -\frac{\sqrt{2}}{4}$.
- 8. f' = 4(g(x))g'(x) by the chain rule, and 4(4)(3) = 48.
- 9. f'' = 6x+3 < 0 and f' < 0 for the interval (-2, -1/2) and the integer in this interval is -1.
- 10. $\frac{1}{6} \left(-\frac{3}{4}x^2 + kx \right) \Big|_0^6 = -\frac{1}{2}$ when (-27+6k)= -3 and k= 4.
- 11. The values must be equal at x=1 so a+3+b = 2a-b and -a+2b = -3. The derivatives must be equal 2a+3 = 2a-b so b= -3, and thus a = -3. So the abs value of a+b is 6.

12.
$$e^x = e$$
 when x=1, so the area is $\int_0^1 (e - e^x) dx = ex - e^x \Big|_0^1 = (e - e) - (0 - 1) = 1$

13. y dy = dx, $\frac{y^2}{2} = x + c$, 2= -1+c, c=3. For the initial condition, we have the function is the

"positive" part of the graph $y = \sqrt{2x+6}$. When x=5 y= 4.

- 14. The values of f' are 0 or undefined at x= 0, pi, pi/2, 3pi/2, 2pi. Five values.
- 15. 8x+3 = 9-16x at x= 1/4.
- 16. f' is zero and f" must be positive. f'=0 at x=1/k or x= -2k. f" = $kx^2 + 2k^2x x 2k$. When x= 1/k, f" = $2 + 2k^2 1$ which is positive. At x= -2k, $f'' = -2k^2 1$ which is negative so the x-coordinate of the rel. min is 1/k.
- 17. f(-1)= -2 and f(1)= 0, which gives slope 1. f' = $3x^2 2x = 1$ when x= -1/3 or x= 1, but the MVT says that the value of x=1 is not part of the conclusion, so x= -1/3.
- 18. 3(6) + $\int_{0}^{2} 4dx$ = 18+8 = 26.

19. For f(x)=3kx+1, f(1)+f(2)+f(3)+f(4) = 3k+1 + (6k+1) + (9k+1) + (12k+1) = 30k+4 = 154 gives k=5.
20.
$$u = x^2 + 1, du = 2xdx, \int_{1}^{4} u^{1/2} (.5du) = \frac{1}{2} \frac{2}{3} u^{3/2} \Big|_{1}^{4} = \frac{1}{3} (8-1) = 7/3.$$

21. f(2)=1 and tangent line has slope 6x-6 = 6. y-1= 6(x-2) has x-intercept 11/6.

- 22. m = 2(4)/3 = 8/3. Normal slope = -3/8.
- 23. The area described by the integral is two triangles like the shaded one shown. So the integral gives area 2(1/2)(4)(4) = 16.

24. f"=1 means f' = x+c and f =
$$\frac{1}{2}x^2 + cx + k$$

and when x=1 we get 0.5+c+k=4. When x= -1, we get 0.5 - c+k= 5. Add to get 1+2k = 9 and so k=4. So f(0) = k = 4.

25. Every fourth derivative is cosx so the 40th derivative is cosx. $f^{(41)}(x) = -\sin x = -\sin \frac{\pi}{6} = -\frac{1}{2}$.