$$\frac{x^2 + 4x + 4}{x^3 - x^2 + 2x - 2} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 2}$$

Let D = the number of vertical asymptotes of: $\frac{x^3 - 2x^2 + x - 2}{x^2 - 5x - 6}$

Let E = the number of vertical asymptotes of: $\frac{10x^3 - 15x^2 + 2x - 3}{18x^3 - 27x^2 + 8x - 12}$

Let F = the number of vertical asymptotes of: $\frac{45x^2 + 54x - 8}{60x^2 - 68x + 8}$

Find the value of A + B + C + D + E + F.

Alpha School Bowl	Question #2	2010 MAO National Convention

Let A = $\sin\left(Tan^{-1}\left(\frac{-3}{4}\right) + Tan^{-1}\left(\frac{7}{24}\right)\right)$

Let B = tan $(\theta - \beta)$, if sin $\theta = \frac{5}{13}$, and sin $\beta = \frac{-5}{13}$. θ is in quadrant 1 and β is in quadrant 4.

Let C (measured in degrees) = θ if $\sin(1-4\theta) = \cos(7+10\theta)$

Find the value of $\frac{169ABC}{44}$.

Let A = $\lim_{x \to \infty} \frac{\sqrt{4x^2 + 3}}{x - 3}$ Let B = $\lim_{x \to 1} f(x) = \{x^2 + 4, x \neq 1 \\ 2 \qquad x = 1$ Let C = $\lim_{x \to 0} \frac{\frac{1}{x + 4} - \frac{1}{4}}{x}$

Let D =
$$\lim_{x \to 3} \frac{3 - \sqrt{x+6}}{3 - x}$$

Find the value of $A \bullet B \bullet C \bullet D$.

Alpha School Bowl	Question #4	2010 MAO National Convention
-------------------	-------------	------------------------------

During the spin cycle on a certain washing machine, the chamber inside the washer rotates 20 times per second. If a coin is on the chamber wall (assume the diameter of the chamber is 28 inches), Let A = the angular velocity in radians per minute.

A circular Ferris wheel needs 42.0 seconds to complete one revolution. The radius of the wheel is 165 feet. Let B = the number of feet a person would travel during a 7 minute ride.

Find the value of $\boldsymbol{A} + \boldsymbol{B}$.

Alpha School Bowl	Question #5	2010 MAO National Convention
.	-	

Let A = $\frac{\sin 3x - \sin x}{\cos x + \cos 3x}$

Let B =
$$\frac{\cot\left(\frac{\pi}{2} - x\right)}{\sec\left(\frac{\pi}{2} - x\right) + \tan\left(\frac{\pi}{2} - x\right)} + 1$$

Find the value of $\frac{A}{B}$.

There exists a triangle with sides of length X, Y, and Z. If $YZ = X^2$ and Y + Z = 2X, Let A = the acute angle(in degrees) opposite the side of length X.

Let B = the angle (in degrees) between the two tangents which can be drawn from the point (1,2) to the conic $2x^2 + 2y^2 - 12x - 16y + 42 = 0$?

Find the value of A - B.

Alpha School BowlQuestion #72010 MAO Nation	onal Convention
---	-----------------

Let A = the product of the solutions of $(\log_2 x)^2 - \log_2 x = \log_2 64$

Let B = the y-coordinate of the point of intersection, if $y = 2 - \log_2(x-2)$ and $y = -1 + \log_2 x$

Let C = the value of $\log_{x^2} 32$ in terms of "y" if $y = (\log_x 32)(\log_{32} 16)$

Find the value of $A \bullet B \bullet C$.

Alpha School BowlQuestion #82010 MAO National Convention

Let A = the value of the determinant

Let B = the sum of the elements in the inverse of the following matrix

 $\begin{pmatrix} 1 & 1 & 1 \\ 3 & 5 & 4 \\ 3 & 6 & 5 \end{pmatrix}$

Find the value of A + B.

Let A = the sum of the zeros of f(x), if $f(2x-6) = 4x^2 - 8x + 1$

Let B = the number of rational solutions to $(x^2 - 9)(x^4 - 3x^2 - 2) = 2(x^2 - 9)$

Let C = the absolute value of the difference between the largest and smallest root of: $(x^{2} + x - 2)^{2} - (x^{2} - x - 6)^{2} = 0$

Find the value of A + B + C.

Alpha School Bowl	Question #10	2010 MAO National Convention
Let A = x-y, if $\sqrt{x} + \sqrt{y}i = \sqrt{9+4x}$	$\sqrt{5}i$	
Let B = $ 5-2i \bullet 2-5i $		
Let C = $2010i^{2010}$		
Let D = $x+y$, if $(5-4i)-(x+yi) =$	= 2	
Find the value of $A + B + C + D$.		

Question #11 Alpha School Bowl 2010 MAO National Convention

 $\left(-\sqrt{3}+i\right)^9$ can be expressed as a complex number in the form A+Bi

 $20cis \frac{11\pi}{6}$ can be expressed as a complex number in the form C + Di

Find the value of A + B + C + D.

Let A = the area of the triangle formed by the vertex and the two endpoints of the latus rectum of the following conic: $y^2 + 8x = 6y - 25$

Let B = the area of the rectangle formed by the four vertices of the latus recti of the following conic: $9x^2 + 25y^2 - 18x - 150y + 9 = 0$

Find the value of $\frac{B}{A}$.

Alpha School BowlQuestion #132010 MAO National Convention

Let A = how many numbers between 450 and 700 that can be formed using only the digits 3, 4, 5, 6, 7, and 8.

Let B = the number of arrangements of the letters in the word TRIANGLE that begin with three vowels.

Given 10 points, 6 of which are collinear, but no other three are. Let C = the number of triangles that have 3 of these points as vertices.

Find the value of A + B + C.

Alpha School BowlQuestion #142010 MAO National Convention

Let A = the acute angle(in radians) between the vectors u = i + 2j - k and v = i + j

Let B = $\csc(Cot^{-1}(-4))$

Express the rectangular point (0, -12) in polar form (r, θ) if $r \ge 0$ and $-360^{\circ} \le \theta < 0$.

Find the value of $A \bullet B \bullet r \bullet \theta$.