For all questions, answer E. "NOTA" means none of the above answers is correct.

For complex number z = a + bi; Re(z) = a, Im(z) = b, and \bar{z} denotes the conjugate of z. $cis(\theta) = cos(\theta) + i sin(\theta)$.

- For the non-zero expression $i\sqrt{i\sqrt{\dots}}$, which is equivalent? 1.
 - A. *i*
- B. -1
- C. -i
- D. 1
- E. NOTA
- Find the distance between 4-7i and 11+17i in the complex plane.
 - A. 5
- B. 17
- C. 25
- D. 31
- E. NOTA

- $\sqrt{-4} \times \sqrt{-3}$? $\sqrt{(-4)(-3)}$
- $B_{\cdot} =$
- C. >

E. NOTA

- $|4i| \times |3i|$? $|4i \times 3i|$
- B. =
- C. >

- E. NOTA
- Given a quadratic equation p(x) whose roots are non-real numbers z_1 and z_2 , the coefficients of p(x) are real if and only if

- A. $|z_1| = |z_2|$ B. $z_1 = \overline{z_2}$ C. $z_1 = -z_2$ D. $Im(z_1) = -Im(z_2)$ E. NOTA

Simplify: 6.

$$\frac{\left[4\mathrm{cis}\left(\frac{\pi}{2}\right)\right]^{3} \left[\sqrt{2}\mathrm{cis}\left(\frac{11\pi}{6}\right)\right]}{\sqrt{8\mathrm{cis}\left(\frac{2\pi}{3}\right)}}$$

- A. -32i
- B. -32
- C. -6
- D. 6*i*
- E. NOTA
- If $\sqrt[4]{-1} = \pm a \pm bi$ where a and b are positive real numbers, what is ab?
 - A. 0
- B. $\frac{\sqrt{3}}{4}$ C. $\frac{1}{2}$
- D. 1
- E. NOTA
- 8. Given that any complex number equivalent to $\sqrt[5]{-6-2i\sqrt{3}}$ can be written in the form $re^{i\theta}$ where r > 0, $0 \le \theta < 2\pi$, and $r, \theta \in \mathbb{R}$, find the sum of all possible values of θ .
- B. $\frac{67\pi}{15}$ C. $\frac{31\pi}{6}$ D. $\frac{16\pi}{3}$
- E. NOTA
- 9. Let z represent a complex number. If $Re(z^2) = Im(z^3)$ and Im(z) = 3, find |Re(z)|.
 - A. 1.5
- B. $\frac{3\sqrt{10}}{5}$
- C. 2.25
- D. 3
- E. NOTA

- 10. The complex numbers $6e^{i30^{\circ}}$, $2e^{i90^{\circ}}$, and $4e^{i150^{\circ}}$ form a triangle in the complex plane. Find the area of this triangle.
- B. $\sqrt{3}$ C. $2\sqrt{3}$ D. $4\sqrt{3}$
- E. NOTA

- 11. Which of the following expressions are equivalent?
 - I. $3\sqrt{3}$ cis(60°)
- II. $3\sqrt{3}e^{i\frac{7\pi}{3}}$
- III. $\frac{9}{2} + \frac{3\sqrt{3}}{2}i$
- IV. $3\sqrt{3}\left(\sin\left(\frac{\pi}{6}\right) + i\cos\left(\frac{\pi}{6}\right)\right)$
- A. I, II, III only B. I, II only
- C. I, II, IV only D. I, III, IV only E. NOTA
- 12. For the equation $x^2 + 2ix i\sqrt{3} = 0$, which of the following is equivalent to the absolute value of the difference between the two roots?
 - A. $\sqrt{2}$
- B. 2
- C. $2\sqrt{2}$ D. $4\sqrt{2}$
- E. NOTA

13. Evaluate:

$$\begin{vmatrix} 4i & 43 & -1 & 0 \\ 6 & -2i & 3 & 1 \\ 0 & 1 & 0 & 0 \\ -5i & 17i & i & -2i \end{vmatrix}$$

- A. -28 + 7i
- B. -20 + 17i
- C. 20 17i
- D. 28 7i
- E. NOTA
- 14. The polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has real coefficients. If f(-3i) = f(5+2i) = 0, what is a+b+c+d?
 - A. 198
- B. 199
- C. 200
- D. 201
- E. NOTA
- 15. If S is the set of points z in the complex plane such that (2i-9)z is a real number, then S is
 - A. a point.
- B. a line.
- C. a parabola.
- D. a triangle.
- E. NOTA
- 16. The complex number z that satisfies $4z 3i\overline{z} = 10 + 3i$ can be written in the form a + bi where a and b are real numbers. Find a - b.
 - A. -1
- B. 0
- C. 1
- D. 2
- E. NOTA
- 17. What conic section is represented by the equation $\operatorname{Re}(z+\overline{z}^2)=2$?
 - A. circle
- B. ellipse
- C. parabola
- D. hyperbola
- E. NOTA

<u>Cor</u>	<u>nplex Numbers – A</u>		$\frac{\text{MA}\Theta \text{ N}}{\text{I. Hint: } \tan(15^\circ) = 2 - \sqrt{3}.$	
18.	Find the harmonic	Find the harmonic mean of $1-i$ and $\sqrt{6}\operatorname{cis}\left(\frac{\pi}{4}\right)$		
	A. $2\sqrt{6}e^{-i15^{\circ}}$	B. $\sqrt{3}e^{-i15^\circ}$	$C.\sqrt{6}e^{i15^{\circ}}$	D. $2\sqrt{3}e^{i15^{\circ}}$

- 19. Find the coefficient of the 6^{th} term in the binomial expansion of $(2x-i)^7$.
 - A. -84i
- B. -84
- C. 84
- D. 84i
- E. NOTA

E. NOTA

20. Which of the following ordered pairs (x, y) is a solution to the following equation when y = 2?

$$(8x^3 + 27)y^2 - 8x^3 + 4 = 31$$

A.
$$(6+7i, 2)$$
 B. $(6+7i\sqrt{2}, 2)$ C. $(\frac{3}{4}-\frac{3\sqrt{3}}{4}i, 2)$ D. $(-\frac{3\sqrt{2}}{4}i, 2)$ E. NOTA

- 21. If $x^2 = 9 40i$, then a complex solution for x is a + bi where b < 0 < a. Find a + b.
 - A. 1
- B. 2
- C. 3
- D. 4
- E. NOTA
- 22. How many of the following statements are true concerning the polynomial $g(x) = x^6 + ax^5 - bx^4 - cx^3 + dx^2 + ex - f$ if a, b, c, d, e, and f are positive real numbers?
 - I. There are 6 complex roots of g(x).
 - II. There could be exactly 3 real roots of g(x).
 - III. All real roots of g(x) could be positive.
 - IV. All 6 roots of g(x) could be non-real.
 - A. 1
- B. 2
- C. 3
- D. 4
- E. NOTA
- 23. Which of the following are always true for complex numbers z, z_1 , and z_2 ?

I.
$$|z_1 + z_2| < |z_1| + |z_2|$$
 II. $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$

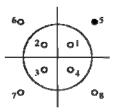
II.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

III.
$$\overline{z_1 - z_2} = \overline{z_1} + \overline{z_2}$$
 IV. $z\overline{z} = |z|^2$

IV.
$$z\overline{z} = |z|^2$$

- A. II only
- B. II, III only C. I, III only
- D. II, IV only
- E. NOTA

24. By whose theorem must the following statement be true?


$$\left[\sqrt{2}\operatorname{cis}\left(\frac{\pi}{9}\right)\right]^6 = 8\operatorname{cis}\left(\frac{2\pi}{3}\right)$$

- A. Euclid
- B. Euler
- C. DeMoivre
- D. DeMorgan
- E. NOTA

- 25. If $f(x) = \frac{1}{x^2 x}$, find $f\left(\frac{1 i\sqrt{3}}{2}\right)$
 - A. -2
- B. -1
- C. 1
- D. 2
- E. NOTA
- 26. The drawing shows several numbered points in the complex plane. The circle is a unit circle centered at the origin. Add the numbers associated with the points that could possibly be the reciprocal of point 5.

- B. 6
- C. 8
- D. 10
- E. NOTA

27. An eigenvalue λ is any number for which $\det(A - \lambda I) = 0$ where A is any $n \times n$ matrix and I is the n \times n identity matrix. If the complex eigenvalues of the following matrix can be represented as $\lambda_1 = a_1 + b_1 i$ and $\lambda_2 = a_2 - b_2 i$, where b_1 and b_2 are not equal to zero, find $\left| \frac{a_1 + a_2}{b_1 + b_2} \right|$.

$$\begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 1 \\ -4 & -1 & -3 \end{bmatrix}$$

- A. 0

- D. $\frac{13}{7}$
- E. NOTA

Use the following information for questions 28-30:

In a circuit, the voltage over component(s) is equal to the current running through the component(s) times the impedance over the component(s). Additionally, when voltages and currents are written in the form $re^{i\theta}$, the angle θ is called the phase angle. Average power can be found with the formula $P = \frac{1}{2} |V| |I| \cos \phi$ where V is the voltage, I is the current, and ϕ is the **difference** between the phase angles of the voltage and current.

- 28. What current (in amps) runs through an inductor with an impedance of 2i ohms if the voltage across the inductor is $8e^{i50^{\circ}}$ volts?
 - A. $4e^{-i40^{\circ}}$
- B. $4e^{i50^{\circ}}$
- C $16e^{i50^{\circ}}$
- D. $16e^{i140^{\circ}}$
- E. NOTA
- 29. Find the average power (in watts) absorbed by the inductor in Problem 28.
 - A. 0
- B. 16
- C. 32
- D. 64
- E. NOTA
- 30. A current of $3e^{i25^{\circ}}$ amps runs through a branch with impedance $3\sqrt{3}-3i$ ohms. What is the average power (in watts) absorbed by the branch?
 - A. 0
- B. $\frac{27\sqrt{3}}{2}$ C. $\frac{27(\sqrt{6}+\sqrt{2})}{2}$ D. $27\sqrt{2}$
- E. NOTA