For all questions, answer E: "NOTA" should be chosen only if none of the given answers is correct. Inverse trigonometric functions have the traditional restricted values:

$$-\frac{\pi}{2} \leq \operatorname{Arcsin}(x) \leq \frac{\pi}{2}$$
; $-\frac{\pi}{2} < \operatorname{Arctan}(x) < \frac{\pi}{2}$; $0 < \operatorname{Arccos}(x) < \pi$

- 1. Solve for x: sin(x) cos(2x) = sin(2x)
 - A: $\frac{\pi}{2}$ C: $\frac{1+\sqrt{3}}{2}$ B: $\frac{5\pi}{6}+2\pi n$ D: $\frac{\pi}{4}$ E: NOTA

2. With a starting value of 0, add 2 for each odd function in the list below, subtract 3 for each even function, and add ¹/₂ if the function is neither. What is the total sum?

- I. y = cos(2x)II. $y = sin^2(x) + cos^2(x)$ III. $y = sin^2(x + \pi)$ IV. y = 1/sin(x)V. $y = e^{sin(x)}$ VI. y = tan(x) + cot(x)A: $\frac{1}{2}$ B: $-\frac{9}{2}$ C: $\frac{7}{2}$ D: -3E: NOTA
- 3. Racheal is getting a new flatscreen TV mounted on the wall in her living room. For optimal visibility, angle of elevation from the viewer's eyes to the center of the television should be less than 30° from the horizontal. When seated on her couch, Racheal's eyes are 4ft above the floor, and she is 10 ft away from the TV. What is the highest (in feet) that the center of the TV can be mounted on the wall and still be viewed properly?
 - A: $\frac{10\sqrt{3}}{3}$ C: $\frac{12+10\sqrt{3}}{3}$ D: $\frac{8+10\sqrt{2}}{2}$ E: NOTA

4. Two sides of a triangle measure 8 and 12 units long, respectively. The angle between them measures 60°. How long is the third side of the triangle, in units?
A: 8√3
B: 4√7

C: $4\sqrt{13}$ D: Not enough information E: NOTA

5. What is the area of the triangle in the previous question, measured in square units?

A:	$24\sqrt{3}$	B: 24	
C:	$20\sqrt{2}$	D: Not enough information	E: NOTA

6. Maryellen is going on a 20-minute jog. She decides that each minute, including the first, her jogging speed in miles per hour for the next minute will be given by | 5(sin(πt) + cos(πt)) | where t is the number of minutes she has been jogging. How many miles does Maryellen jog in those 20 minutes, to the nearest tenth of a mile? Assume she begins jogging at time t = 0. A: 2 B: 5 C: 1.7 D: 2.5 E: NOTA

Trigonometry ALI		ALPHA	2010 MAG	MAO National Convention	
7. If ABCD is a kite, evaluate $sinA + sinB + sinC + sinD$.					
	A: 2	,	B: $1 + 2\sin B$		
	C: $2\sqrt{3}$		D: $1 + \cos C$	E: NOTA	1
8. Two points A and B lie on a circle, not dian circle), they form the triangle ABC. How n $\sin B = \frac{1}{2}$?		e, not diametrically opposed. W C. How many such points C are	ith a third poir there on the c	nt C (also on the ircle such that	
	A: 0 C: 2		B: 1 D: Cannot be deter	rmined E: N	ОТА
9. A triangle has angle measurements of 80°, 70°, and 30°. The longest s long. If the other sides of the triangle have lengths x and y, in centimet is $\frac{x}{y}$?		gest side of the timeters, with	triangle is 8cm $x < y$, then what		
	$A \cdot 2\sin 70^\circ$		$B^{-1/2} \sin 70^{\circ}$		
	C: $\frac{1}{2}\cos 70$	0	D: $\frac{1}{2} \csc 70^{\circ}$	E: NC	OTA
10	. If a project represents t A: tanθ C: v cosθ	ile is fired from a cann he forward (horizontal	on at angle θ and initial velocity) initial velocity of the projectile B: v sinθ D: cos vθ	v, which of th ? E: NOTA	e following
11	An octagor A: 0	has exterior angles α_1	, $\alpha_2, \dots \alpha_8$. What is $\sin(\alpha_1 + \alpha_2 + \dots B; -1)$	$+ \alpha_8)$?	
	C: 1		D: Cannot be deter	rmined	E: NOTA
12	What is the period of $f(x) = \sin(x) + \cos(2x)$?				
	Α: π		Β: 2π		
	C: 3π		D: 4π	E: NOTA	1
13	3. What is the domain of $f(x) = \sec(2x)$? (R denotes the set of real numbers)				
	A: R		B: R , $x \neq k\pi$: k r	atural	
	C: R , $x \neq ($	$(2k+1)\pi$: k natural	D: R , $x \neq (2k+1)$	π : k integer	E: NOTA
14. Which of the following angles is coterminal to 8391°?					
	A: 101°		B: 371°		
	C: 651°		D: 831°	E: NOTA	X
15	A circus ten around it, v central ang diametrical A: $\frac{120}{169}$	nt has one central pole with a diameter 24ft; th le of the tent as the ang ly opposed tent poles.	25ft tall, and a dozen 20ft poles e tent material is taut between ea- gle of the tented material in the p If the central angle of the tent n B: $\frac{5}{13}$	arranged unifor ach of these populane that cuts neasures θ , when	formly in a circle bints. Define the through two at is $\sin\theta$?

C: $\frac{12}{13}$ D: $\frac{24}{25}$

E: NOTA

Trigonometry	ALPHA	2010 MAO Na	ational Convention
16. Evaluate tan75 A: $2-\sqrt{3}$ C: $1+\frac{\sqrt{3}}{2}$	0	B: $2 + \sqrt{3}$ D: $3 - \sqrt{3}$	E: NOTA
17. Find the sum o A: 7π C: 3π	f all solutions to sin(x)cos(2x) =	= 0 for $0 < x \le 2\pi$ B: 5π D: 2π	E: NOTA
18. How many tim A: They do not C: Twice	t intersect $y = sin(x)$	intersect the graph of y B: Once D: Infinitely many tin	= e ^x ? nes E: NOTA
19. Find the cotang A: $\frac{7}{19}$ C: $\frac{19}{7}$	gent of the angle between the ve	ectors <1, 3> and <4, 5 B: $\frac{19}{\sqrt{410}}$ D: $\frac{133}{410}$	> E: NOTA
20. Bailey is bakin to be split amo β (in degrees),	In g a pie. She knows her brother ng 3 people. If each of those th what is the cosecant of β ?	is going to eat half of i ree gets a slice corresp	t, but the remainder needs onding to a central angle of
A: 2 C: $\sqrt{3}$		B: $\frac{\sqrt{3}}{2}$ D: $\frac{2\sqrt{3}}{3}$	E: NOTA
21. Evaluate: Arc A: $\frac{5\pi}{4}$ C: $-\frac{\pi}{4}$	ctan(1) – Arctan(0)	B: $\frac{\pi}{4}$ D: $-\frac{3\pi}{4}$	E: NOTA
22. What is the dom A: $-1 < x < 1$ C: $0 < x < 2\pi$	main of f(x) =Arctan(sin(x))?	B: 0 < x < 1 D: All real numbers	E: NOTA
23. If cosθ is negat A: I C: III	tive and $tan\theta$ is negative, then w	which in quadrant does t B: II D: IV	the terminal side of θ lie? E: NOTA
24. Which of the for A: cos(2x) C: 1	ollowing is equal to $\cos^4(x) - \sin^4(x) = \sin^4(x) - \sin^4(x)$	n ⁴ (x) ? B: cos(x)sin(x) D: sin(2x)	E: NOTA

25. If $x = \frac{a}{b}$ where <i>a</i> is the square	re root of a prime and b is a positiv	ve integer, and		
Arcsin(x) = $\frac{\pi}{4}$, what is the value of a + b, to the nearest tenth?				
A: 4	B: 3.4			
C: 0	D: 0.6	E: NOTA		
26. How many petals does the graph of $r = \sin(2010 \theta)$ have?				
A: 2010 C: 4020	D: 4019	E: NOTA		
27. A triangle ABC has side lengths of 5, 12 and 13 units respectively for sides a, b, and c. If α is the angle between sides a and c, what is sec ² (α)?				
A: $\frac{144}{169}$	B: $\frac{144}{25}$			
C: $\frac{25}{144}$	D: $\frac{169}{25}$	E: NOTA		
28. Convert 87° into radians				
A: $\frac{29\pi}{60}$	B: $\frac{29}{30}$			

A:	60	B: $\overline{30}$	
$C \cdot$	87	$D: \frac{29\pi}{2}$	Ε · ΝΟΤΑ
C.	180π	D. 360	L. NOTA

29. A function f is defined by $f(x) = \cos^2(x) + \sin(2x)$. What is $f(\frac{\pi}{6})$?

A:	$\frac{3}{4}$	B: $\frac{3+2\sqrt{3}}{4}$	
C:	$\frac{1+2\sqrt{3}}{4}$	D: $\frac{5}{4}$	E: NOTA

30. A triangle has sides a, b and c, and angles A, B and C such that each angle is opposite the side labeled with the same letter. If a = 10, b = 24, and $A = Arcsin \left(\frac{5}{13}\right)$ then what is the perimeter of triangle ABC? A: 60 B: 46 C: 30 B: 42 E: NOTA