1.
$$\begin{bmatrix} 7 & -2 \\ 9 & 1 \end{bmatrix} + \begin{bmatrix} -3 & 8 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 7-3 & -2+8 \\ 9+2 & 1+0 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 11 & 1 \end{bmatrix}$$
. A
2. $\langle 1, -1, 1 \rangle \cdot \langle 2, 5, -2 \rangle = 1 \cdot 2 + -1 \cdot 5 + 1 \cdot -2 = 2 - 5 - 2 = -5$. A

3. If every entry of a row of a matrix **A** is multiplied by a scalar *c*, then the determinant of the new matrix is the determinant of **A** times *c*. If every entry of a 4×4 matrix is multiplied by 2, then each of it's four rows are multiplied by 2. Therefore $|\mathbf{B}| = 2^4 |\mathbf{A}|$ and hence $\frac{|\mathbf{B}|}{|\mathbf{A}|} = 16$, noting that $|\mathbf{A}| \neq 0$

since A is nonsingular. D

4. The entry in the *i*th row and *j*th column of $\mathbf{E}_{23} \cdot \mathbf{E}_{35}$ is $\sum_{k=1}^{n} a_{ik} b_{kj}$, where the entry in the *i*th row and *j*th column of \mathbf{E}_{23} and \mathbf{E}_{35} are a_{ij} and b_{ij} , respectively. The only one of the sums that will have a non-zero entry will occur when i = 2, j = 5, and k = 3. Therefore the entry in the 2nd row and 5th column of $\mathbf{E}_{23} \cdot \mathbf{E}_{35}$ is 1, and all other entries are 0. Therefore $\mathbf{E}_{23} \cdot \mathbf{E}_{35} = \mathbf{E}_{25}$. A

5. Expanding by minors,
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = -2 + 1 = -1.$$
 B

6. The two curves intersect in the x-y plane when $x^2 + 3 = 2x + 6$. $x^2 - 2x - 3 = 0$. x = -1 and x = 3. The area of R is $\int_{-1}^{3} (2x + 6 - x^2 - 3) dx = \int_{-1}^{3} (3 + 2x - x^2) dx = \left[3x + x^2 - \frac{x^3}{3} \right]_{-1}^{3} = 9 + \frac{5}{3} = \frac{32}{3}$.

When *R* is transformed to *R'*, the area of *R'* will be the area of *R* multiplied by $\begin{vmatrix} 4 & 2 \\ 1 & 2 \end{vmatrix} = 6$. The area

- of R' is therefore 64. **D**
- 7. In order for two vectors to be linearly independent, they must not be scalar multiples of each

other. Each pair of vectors are scalar multiples except for $\begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 10 \\ 3 \end{pmatrix}$. **B**

8. Let
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$$
, noting that \mathbf{A} is symmetric. $\mathbf{x}^T \mathbf{A} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
= $\begin{bmatrix} a_{11}x_1 + a_{12}x_2 & a_{12}x_1 + a_{22}x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 = 7x_1^2 - 4x_1x_2 + 5x_2^2$. Equating coefficients, we have $2a_{12} = -4$ and hence $a_{12} = -2$. \mathbf{B}

9. Since the coefficients of f(x) are real numbers and exactly one root is real, the other two must be complex conjugates. Let the roots be r = a + bi, s = a - bi, and *t* where *a*, *b*, and *t* are real

numbers. Then
$$\delta = \begin{vmatrix} 1 & a+bi & (a+bi)^2 \\ 1 & a-bi & (a-bi)^2 \\ 1 & t & t^2 \end{vmatrix} = \begin{vmatrix} 1 & a+bi & a^2-b^2+2abi \\ 1 & a-bi & a^2-b^2-2abi \\ 1 & t & t^2 \end{vmatrix}$$
. First notice that $\delta = 0$ if and

only if b = 0 and a = t, which is not the case. Also, notice that subtracting the second row from the first row will leave the determinant unchanged, so

$$\delta = \begin{vmatrix} 0 & 2bi & 4abi \\ 1 & a-bi & a^2-b^2-2abi \\ 1 & t & t^2 \end{vmatrix} = -2bt^2i + 4abi + 2a^2bi - 2b^3i + 4ab^2 - 4a^2bi - 4ab^2$$

 $=-2bt^{2}i+4abti-2a^{2}bi-2b^{3}i$. This is a non-zero, purely imaginary number, so its square will be a negative real number. **B**

10. Notice that for any invertible matrix \mathbf{A} , $|\mathbf{A}||\mathbf{A}^{-1}|=1$. However, since all of the entries of both \mathbf{A} and \mathbf{A}^{-1} are integers, $|\mathbf{A}|$ and $|\mathbf{A}^{-1}|$ must also be integers. If the product of two integers is 1, then either both integers are 1 or both integers are -1. **B**

11.
$$\|\mathbf{v}\| = \sqrt{\left(\frac{1}{3}\right)^2 + a^2} = 1$$
. $\frac{1}{9} + a^2 = 1$. $a^2 = \frac{8}{9}$. Since *a* is positive, we have $a = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$. C

12. The trace of a matrix is the sum of the diagonal elements. The trace is therefore 9. D

13. Putting **A** is reduced row echelon form gives $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. The rank is the number of non-zero

rows, which is 1. **B**

14. We want to find the vectors
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 such that $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Then we must have $x + 2y - z = 0$. $x = -2y + z$. We can take y and z as free variables. Setting $y = 1$ and $z = 0$, we get $x = -2$. Setting $y = 0$ and $z = 1$, we get $x = 1$. Then two linearly independent solutions are $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$

and
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
. The only choice that is not on the span of these two vectors is $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. This can be checked
by noticing that $\begin{bmatrix} 1 & 2 & -1\\3 & 6 & -3\\-2 & -4 & 2 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\6\\-4 \end{bmatrix} \neq \begin{bmatrix} 0\\0\\0 \end{bmatrix}$. **D**

15. \mathbf{B}^{T} is a 2×3 matrix, so $\mathbf{B}^{T}\mathbf{A}$ is defined, and the product is a 2×4 matrix. **B** 16. Notice that $\mathbf{B} = \mathbf{A}\mathbf{A}^{T}$. Therefore $|\mathbf{B}| = |\mathbf{A}\mathbf{A}^{T}| = |\mathbf{A}||\mathbf{A}^{T}| = |\mathbf{A}|^{2} = 4^{2} = 16$. **D**

17. Statement I is true. If A is invertible, then the system $Ax = 0_{n \times 1}$ has only the trivial solution, and hence statement II is true. Since $0 = |\mathbf{A}| = |\mathbf{A}^T|$, statement III is also true. Statement IV is false. Consider the matrix $\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}$ which is singular, but has trace 1. Three of the statements are true. C 18. Notice that $\cos(\theta) = \frac{\langle 1,1 \rangle \cdot \langle 1+t,1-t \rangle}{\|\langle 1,1 \rangle\| \|\langle 1+t,1-t \rangle\|} = \frac{2}{\sqrt{2}\sqrt{2t^2+2}} = \frac{1}{\sqrt{t^2+1}}$. Differentiating both sides with respect to t, $-\sin(\theta)\frac{d\theta}{dt} = -\frac{1}{2}(t^2+1)^{-\frac{3}{2}} \cdot 2t = -t(t^2+1)^{-\frac{3}{2}}$. Notice that when t = 1, $\cos(\theta) = \frac{\sqrt{2}}{2}$ and hence $\sin(\theta) = \frac{\sqrt{2}}{2}$ since θ is acute. Then when t = 1 $\frac{d\theta}{dt} = -\sqrt{2} \cdot -(2)^{-\frac{3}{2}} = \frac{1}{2}$. C 19. $D(x) = \begin{vmatrix} x & 1 \\ e^x & x+1 \end{vmatrix} = x(x+1) - e^x = x^2 + x - e^x$. $D'(x) = 2x + 1 - e^x$. D'(0) = 0 + 1 - 1 = 0. **E** 20. Let $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ and $x^2 + y^2 = 1$. Then $\mathbf{A}\mathbf{x} = \begin{bmatrix} x \\ 2y \end{bmatrix}$. We would like to maximize $\sqrt{x^2 + 4y^2}$. $x^2 = 1 - y^2$, so we can maximize $\sqrt{1 + 3y^2}$. Realizing that $-1 \le y \le 1$, this is clearly maximized when either y = 1 or y = -1, and the maximum value is $\sqrt{4} = 2$. **D** 21. $\mathbf{A}^{3} = \mathbf{A} \cdot \mathbf{A}^{2} = \mathbf{A} (\mathbf{A} + 2\mathbf{I}_{n}) = \mathbf{A}^{2} + 2\mathbf{A} = \mathbf{A} + 2\mathbf{I}_{n} + 2\mathbf{A} = 3\mathbf{A} + 2\mathbf{I}_{n}$. C 22. $\|\mathbf{v} \times \mathbf{i}\| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & x & y \\ 1 & 0 & 0 \end{vmatrix} = y\mathbf{j} - x\mathbf{k} = 1$. Therefore $x^2 + y^2 = 1$. $\|\mathbf{v}\| = \sqrt{1^2 + x^2 + y^2} = \sqrt{2}$. **B**

23. Row reducing the augmented matrix for the system of equations,

 $\begin{bmatrix} 2 & -6 & 8 \\ -3 & 9 & -12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 \\ -1 & 3 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$. Since the second row is all zeros, the system of

equations can be represented as a single equation in two variables (this is because the second equation is a scalar multiple of the first). Since there are more variables than there are linearly independent equations, there are infinitely many solutions. D

24. $\|\langle t, 2+t \rangle\| = \sqrt{t^2 + (2+t)^2} = \sqrt{2t^2 + 4t + 4}$. For simplicity, we can find the *t* that will minimize $2t^2 + 4t + 4$, realizing that this value of t will also minimize the square root. Taking the derivative and setting it equal to 0, we get 4t + 4 = 0, and hence t = -1. Notice that the second derivative is 4 > 0, and hence this does indeed lead to a minimum. **E**

25. By plotting the vectors in the x-y plane and using the right-hand rule, it can be seen that only the set of vectors $\mathbf{u} = \langle 5, 1, 0 \rangle$ and $\mathbf{v} = \langle 2, 3, 0 \rangle$ will satisfy $\mathbf{u} \times \mathbf{v} = \langle 0, 0, a \rangle$, where a > 0. A

26. Let *x* be the price of an apple and *y* be the price of an orange. We then want to solve for *y* where

$$4x + 7y = 43$$
 and $3x + y = 11$. Using Cramer's Rule, $x = \frac{\begin{vmatrix} 4 & 43 \\ 3 & 11 \end{vmatrix}}{\begin{vmatrix} 4 & 7 \\ 3 & 1 \end{vmatrix}} = \frac{44 - 132}{4 - 21} = \frac{-88}{-17} = 5$. **D**

 $\begin{array}{l} \underline{\text{Mu Matrices and Vectors Solutions}} & 2010 \text{ MA} \Theta \text{ National Convention} \\ \hline 27. \begin{bmatrix} -1 & 2 \\ 8 & -1 \end{bmatrix} \mathbf{x} = \lambda \mathbf{x} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \mathbf{x}. \text{ Then } \begin{bmatrix} -1-\lambda & 2 \\ 8 & -1-\lambda \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \text{ Such a system of equations can} \\ \hline \text{only have a non-zero solution if the matrix } \begin{bmatrix} -1-\lambda & 2 \\ 8 & -1-\lambda \end{bmatrix} \text{ is singular, that is, } \begin{vmatrix} -1-\lambda & 2 \\ 8 & -1-\lambda \end{vmatrix} = 0. \\ \hline \text{Then } \lambda^2 + 2\lambda - 15 = 0 \text{ and } \lambda = 3 \text{ or } \lambda = -5. \mathbf{C} \\ \hline 28. \text{ The cofactor is } (-1)^{2+3} \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix} = -3. \mathbf{B} \\ \hline 29. |\mathbf{A}| = |\mathbf{A}^T| = |-\mathbf{A}| = (-1)^{11} |\mathbf{A}| = -|\mathbf{A}|. \text{ As a result, we must have that } |\mathbf{A}| = 0. \mathbf{A} \\ \hline 30. \| \langle 1, 2, 3 \rangle - 2 \cdot \langle -1, 4, 3 \rangle \| = \| \langle 3, -6, -3 \rangle \| = \sqrt{3^2 + (-6)^2 + 3^2} = \sqrt{9 + 36 + 9} = \sqrt{54} = 3\sqrt{6}. \mathbf{C} \end{array}$