For all questions, answer E. "NOTA" means none of the above answers is correct. For a matrix **A**, let a_{ij} denote the entry in the *i*-th row and *j*-th column of **A**. Let \mathbf{I}_n denote the $n \times n$ identity matrix and let $\mathbf{0}_{m \times n}$ denote the $m \times n$ matrix of all zeros.

1. Evaluate:
$$\begin{bmatrix} 7 & -2 \\ 9 & 1 \end{bmatrix} + \begin{bmatrix} -3 & 8 \\ 2 & 0 \end{bmatrix}$$

A. $\begin{bmatrix} 4 & 6 \\ 11 & 1 \end{bmatrix}$ B. $\begin{bmatrix} -25 & 56 \\ -25 & 72 \end{bmatrix}$ C. $\begin{bmatrix} 10 & 10 \\ 11 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 5 & 5 \\ 10 & 2 \end{bmatrix}$ E. NOTA
2. Evaluate: $\langle 1, -1, 1 \rangle \cdot \langle 2, 5, -2 \rangle$
A. -5 B. -1 C. 5 D. 12 E. NOTA
3. Let **A** be a nonsingular 4×4 matrix and let **B** be the matrix obtained when every entry of *A* is
multiplied by 2. What is $\frac{|\mathbf{B}|}{|\mathbf{A}|}$?

A. 1 B. 2 C. 4 D. 16 E. NOTA

4. Let \mathbf{E}_{ij} be the $n \times n$ matrix where the entry in the *i*-th row and *j*-th column is 1, and all other entries are 0, where $1 \le i, j \le n$. If $n \ge 5$, then what is $\mathbf{E}_{23} \cdot \mathbf{E}_{35}$?

A.
$$E_{25}$$
 B. E_{32}
 C. E_{33}
 D. E_{52}
 E. NOTA

 5. Evaluate:
 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{vmatrix}$
 A. -2
 B. -1
 C. 0
 D. 1
 E. NOTA

6. Let *R* be the region in the *x*-*y* plane bounded by the curves $y = x^2 + 3$ and y = 2x + 6. *R* is transformed to the region *R'* in the *u*-*v* plane by the transformation u = 4x + 2y and v = x + 2y. What is the area of *R'*?

A. $\frac{16}{9}$ B. $\frac{32}{3}$ C. 32 D. 64 E. NOTA

7. Which of the following pairs of vectors in \Box ³ are linearly independent?

A.
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$
B. $\begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 10 \\ 3 \end{pmatrix}$
C. $\begin{pmatrix} -3 \\ 6 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ -\frac{1}{3} \end{pmatrix}$
D. $\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$
E. NOTA

8. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and let \mathbf{A} be a symmetric matrix such that $\mathbf{x}^T \mathbf{A} \mathbf{x} = 7x_1^2 - 4x_1x_2 + 5x_2^2$. What is the a_{12} entry of \mathbf{A} ?

9. Let f(x) be a cubic polynomial with real coefficients, and let r, s, and t be the roots of f(x).

Let $\delta = \begin{vmatrix} 1 & r & r^2 \\ 1 & s & s^2 \\ 1 & t & t^2 \end{vmatrix}$. Suppose that exactly one root of f(x) is real. Which of the following must be

true?

A. δ^2 is a non-real complex number

B. δ^2 is a negative real number

C. δ^2 is zero

D. δ^2 is a positive real number

E. NOTA

10. Let **A** be an $n \times n$ matrix whose entries are integers. If **A** is invertible and if all the entries of **A**⁻¹ are integers, then which of the following represents the set of all possible values of $|\mathbf{A}|$?

A. $\{1\}$ B. $\{-1,1\}$ C. $\{-1,0,1\}$ D. \Box E. NOTA

11. Let $\mathbf{v} = \frac{1}{3}\mathbf{i} + a\mathbf{j}$, where *a* is a positive real number. For what value of *a* is $\|\mathbf{v}\| = 1$?

A.
$$\frac{1}{3}$$
 B. $\frac{\sqrt{2}}{2}$ C. $\frac{2\sqrt{2}}{3}$ D. $\frac{8}{9}$ E. NOTA

Mu Matrices and Vectors		2010 MAO Natio	nal Convention			
For questions 12, 13, and 14 let $\mathbf{A} =$	$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ -2 & -4 & 2 \end{bmatrix}.$					
12. What is the trace of A ?						
A. 0 B. 3	C. 6	D. 9	E. NOTA			
13. What is the rank of A ?						
A. 0 B. 1	C. 2	D. 3	E. NOTA			
14. The null space of a matrix A is the set of all vectors x such that $\mathbf{A}\mathbf{x} = 0_{3\times 1}$. Which of the following vectors is not in the null space of A ?						
A. $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ B. $\begin{bmatrix} -2\\1\\0 \end{bmatrix}$	C. $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$	D. $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$	E. NOTA			
15. Let A be a 3×4 matrix and let B be a 3×2 matrix. Which of the following products is defined?						
A. BA B. $\mathbf{B}^T \mathbf{A}$	C. $\mathbf{B}\mathbf{A}^{T}$	D. $\mathbf{B}^T \mathbf{A}^T$	E. NOTA			
16. Let A be an $n \times n$ matrix with real entries, and let B be the $n \times n$ matrix such that $b_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$. If $ \mathbf{A} = 4$, then what is the value of $ \mathbf{B} $?						

A. 0 B. 4 C. 8 D. 16 E. NOTA

17. Let **A** be an $n \times n$ singular matrix. How many of the following statements must be true?

I. det $(\mathbf{A}) = 0$ II. There exists a real non-zero *n*-dimensional vector \mathbf{x} such that $\mathbf{A}\mathbf{x} = \mathbf{0}_{n \times 1}$ III. \mathbf{A}^T is singular IV. The trace of \mathbf{A} is 0 A. 1 B. 2 C. 3 D. 4 E. NOTA

18. Let θ be the acute angle (measured in radians) between the vectors $\langle 1,1 \rangle$ and $\langle 1+t,1-t \rangle$ after *t* seconds, where $t \ge 0$. What is $\frac{d\theta}{dt}$ when t = 1?

A. $-\frac{\sqrt{2}}{4}$ B. 0 C. $\frac{1}{2}$ D. $\frac{\sqrt{2}}{2}$ E. NOTA

Mu Matrices and Vectors			2010 MAO National Convention	
19. Let $D(x) = \begin{vmatrix} x \\ e^x \end{vmatrix}$	$\frac{1}{x+1}$. Find $D'(0)$.			
A. 1	B. 2	C. 3	D. 4	E. NOTA
20. Let $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Find the maximum v	value of $\ \mathbf{A}\mathbf{x}\ $ where \mathbf{x}	x is a 2×1 vector such t	hat $\ \mathbf{x}\ = 1$.
A. $\frac{1}{2}$	B. 1	C. $\frac{3}{2}$	D. 2	E. NOTA
21. Let A be an $n \times n$	<i>n</i> matrix such that \mathbf{A}^2	$= \mathbf{A} + 2\mathbf{I}_n$. Which of	the following is equal t	o A^{3} ?
A. $\mathbf{A} + 2\mathbf{I}_n$	B. $2\mathbf{A} + 2\mathbf{I}_n$	C. $3\mathbf{A} + 2\mathbf{I}_n$	D. $4\mathbf{A} + 2\mathbf{I}_n$	E. NOTA
22. Let $\mathbf{v} = \mathbf{i} + x\mathbf{j} + y$	$\mathbf{v}\mathbf{k}$. If $\ \mathbf{v} \times \mathbf{i}\ = 1$, then	what is $\ \mathbf{v}\ $?		
A. 1	B. $\sqrt{2}$	C. $\sqrt{3}$	D. 2	E. NOTA
23. How many solut	ions does the followin	g system of equations	s have?	
	2 <i>x</i> -	-6y = 8		

$$-3x+9y = -12$$

A. 0 B. 1 C. 2 D. Infinitely many E. NOTA

24. Let **v** be the vector $\langle t, 2+t \rangle$, where $t \in \Box$. For what value of *t* is $\|\mathbf{v}\|$ minimized?

A.
$$-2$$
 B. $-\frac{1}{2}$ C. 0 D. $\frac{1}{2}$ E. NOTA

25. Let **u** and **v** be vectors in the *x*-*y* plane. For which of the following pairs of vectors will $\mathbf{u} \times \mathbf{v} = \langle 0, 0, a \rangle$, where *a* is a positive real number?

A.
$$\mathbf{u} = \langle 5, 1, 0 \rangle$$
 and $\mathbf{v} = \langle 2, 3, 0 \rangle$ B. $\mathbf{u} = \langle 1, 3, 0 \rangle$ and $\mathbf{v} = \langle 2, 1, 0 \rangle$ C. $\mathbf{u} = \langle -1, 1, 0 \rangle$ and $\mathbf{v} = \langle 1, 1, 0 \rangle$ D. $\mathbf{u} = \langle -1, -2, 0 \rangle$ and $\mathbf{v} = \langle -2, 2, 0 \rangle$ E. NOTA

26. Alex and Brian go to the grocery store to purchase apples and oranges. Alex purchases four apples and seven oranges for a total of \$43. Brian purchases three apples and one orange for a total of \$11. How much does one orange cost?

A. \$2 B. \$3 C. \$4 D. \$5 E. NOTA

Mu Matrices and Vectors

2010 MAO National Convention

27. For which of the following values of λ does there exist a nonzero vector **x** such that $\begin{bmatrix} -1 & 2 \\ 8 & -1 \end{bmatrix} \mathbf{x} = \lambda \mathbf{x} ?$ C. 3 D. 4 A. 1 **B**. 2 E. NOTA 28. Let $\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 7 & 2 & -3 \\ 2 & 3 & 5 \end{bmatrix}$. What is the cofactor of a_{23} ? A. -9 B. -3 C. 3 D. 9 E. NOTA 29. Let **A** be an 11×11 matrix such that $\mathbf{A}^T = -\mathbf{A}$. Which of the following is true? A. |A| = 0**B.** |A| > 0D. The sign of $|\mathbf{A}|$ cannot be determined C. |A| < 0E. NOTA 30. Evaluate: $\|\langle 1,2,3\rangle - 2 \cdot \langle -1,4,3\rangle\|$ C. $3\sqrt{6}$ D. $\sqrt{14} + 2\sqrt{26}$ E. NOTA A. $2\sqrt{2}$ B. 4