	Number Theory	OPEN	2010 MAO National Convention
--	---------------	------	------------------------------

For all questions, answer E: "NOTA" should be chosen only if none of the given answers is correct. For this test, "a square" is taken to be the square of an integer, and "a cube" is taken to be the cube of a positive integer, unless otherwise noted.

- Which of the following is NOT a pythagorean triple?
 A: (95472, 237154, 255650)
 B: (54288, 130834, 141650)
 C: (81079, 411000, 418921)
 D: (115446, 655928, 666012)
 E: NOTA
- 2. Suppose *a* is an integer, and *a*! is divisible by 10^5 but not 10^6 . Solve for *x*:

$0 = x^3 + ax + 3$		
A: 0	B: -1	
C: <i>a</i>	D: 2, -1	E: NOTA

3. How many positive proper divisors does 224 have?

A: 10	B: 12	
C: 11	D: 9	E: NOTA

4. If we know that for some integer $k, k \equiv 3 \pmod{4}$ and $k \equiv 2 \pmod{7}$, what can we say about k?A: k is oddB: k cannot be a perfect squareC: $k \equiv 3 \pmod{28}$ D: Both A and BE: NOTA

5. Find x in a solution (x, y) to the Diophantine equation 37x + 11y = 3

A: -9	B: -2	
C: 3	D: 2	E: NOTA

For questions 6 and 7, let $\varphi(n)$ represent the Euler totient function; $\varphi(n)$ = the number of integers less than n which are relatively prime to n.

6. Evaluate $\varphi(36)$

A: 12	B: 35	
C: 15	D: 0	E: NOTA

1

7.	A nontotient is a positive integer <i>n</i>	for which the formula $\varphi(x) = x$	<i>n</i> has no solution for x. How
	many of the following are nontotien	nts? 6, 12, 14, 18, 22, 24,	, 26
	A: 1	B: 2	
	C: 3	D: 4	E: NOTA
8.	Which of these sets is NOT known	to be infinite?	
	A: The set of all prime numbers		
	B: The set of Pythagorean triples		
	C: The set of all primes <i>p</i> such that	p+2 is prime	
	D: The set of constructible regular	polygons (by compass and str	aightedge)
	E: NOTA		
0	Find the sum of the prime divisors	of 15147	
9.	Find the sum of the prime divisors		
	A: 37	B: 190	E. NOTA
	C: 40	D: 31	E: NOTA
10	. If you are told that k is a positive in	teger, and that k^2 has 6 prope	er divisors, what could be true
	about <i>k</i> ?		
	A: k is prime	B: k is a perfect square	
	C: <i>k</i> is a cube of a prime	D: <i>k</i> has 4 proper divisors	E: NOTA
11.	. Which of the following numbers ca	n be expressed as the sum of	two cubes in two different
	ways?	-	
	A: 8	B: 1729	
	C: 72	D: 1216	E: NOTA
12	. Find <i>x</i> satisfying the congruence 11	$x \equiv 1 \pmod{23}$	
	A: 22	B: 13	
	C: 4	D: 16	E: NOTA

13. Let M be the least common multiple of 214 and 191, and let N be their greatest common divisor. What is M – N?
A: 40875 B: 40874
C: 40872 D: 40873 E: NOTA

The next three questions involve partitions. A partition of a natural number is a set of natural numbers which sum to the original number, with order not important. For example, the partitions of 3 are $\{3\}$, $\{1,1,1\}$, and $\{1,2\}$

14. How many partitions are there for the number 6?

A: 10	B: 9	
C: 8	D: 7	E: NOTA

15. Which of the following statements are true for any natural number $n \ge 2$?

I. $n+1$ divides $n!$	II. $n+1$ has more partitions than n does		
III. There is a prime number	between n and $2n$		
A: I only	B: I and II		
C: II only	D: I, II and III	E: NOTA	

16. Let x be the number of partitions of the integer 5, and y be the number of partitions of the integer 4. Find the smallest positive integer z such that $z \equiv x \pmod{y}$

A: 1	B: 2	
C: 3	D: 4	E: NOTA

17. Given the following congruences: $x \equiv 2 \pmod{7}$, $x \equiv 1 \pmod{11}$, $x \equiv 4 \pmod{13}$ If the solution is a congruence in the form $x \equiv m \pmod{n}$ where $0 \le m \le n$, what is the nearest integer to the ratio n / m?

A: 0	B: 4	
C: 5	D: 2	E: NOTA

Number Theory	OPEN		2010 MAO National Conventio
18. Find the smalles	st positive integer x sucl	that $x \equiv 13^{31}$ (me	od 31)
A: 0	B:	1	
C: 13	D:	26	E: NOTA
19. Evaluate (A + E	B(C - A) using the follo	wing informatior	1:
A = gcd(84, 36)	B = lcm(14, 98)	C = 5! - 5	$D = 81 \pmod{7}$
A: 11330	B:	11220	
C: 12210	D:	11880	E: NOTA
A: e	ratio)	B: ln 2 D: π	
C: φ (the golder	i ratio)	D: π	E: NOTA
	d z are non-zero algebra	ic numbers. Whi	ch of the following must also be
algebraic?			
I. $x + y$	$\prod x^{y}$		
III. $(x-y)*z$ A: I only	IV. $\log(z) + x^2$	B: I and II	
C: I and III		D: I and I D: I, II and I	III E: NOTA
C. I und III		D. 1, 11 und 1	
22. Suppose you are	e told that some number	α can be express	ed as the solution to a polynomial wi
rational coeffici A: α is algebraic	ents. What can you say	about α ? α is not algebrai	

C: α may be algebraic	D: α is algebraic only if $a_0 = 0$	E: NOTA
-----------------------	--	---------

23. Which of the following numbers is divisible by 9?					
A: 98612347	B: 98327549806	C: 2456877	D: 547948	E: NOTA	

Number Theory	OPEN		2010 MAO National Convention
24. Convert the num	ber 8741 into base 8 (also	o known as octa	1)
A: 2145	B: 21	045	
C: 71045	D: 41	045	E: NOTA
25. What is the proba	ability that a randomly se	lected factor of	135 is odd?
A: 1/5	B: 3/	5	
C: 5/12	D: 27	7/35	E: NOTA

26. Sven is walking up a numbered staircase. The first step is labeled with a 1, the next with a 2, and so on for all 100 steps. Sven decides that every time he stands on a prime number, he will skip the next step. How many steps will Sven stand on?A: 24B: 25

C: 75 D: 76 E: NOTA

27. Suppose Sven decides to walk down the staircase, but this time when he stands on a prime number *n*, he skips the next \sqrt{n} steps, rounded down to the nearest integer (assume he can do this safely and accurately, without falling down the stairs). How many prime-numbered steps does Sven touch on the way down?

A: 11	B: 12	
C: 14	D: 25	E: NOTA

28. Which of the following sets is closed under exponentiation; that is, for x and y in the set, x^{y} and

y^{x} are always members of the set?		
I. Real Numbers	II. Positive Integers	
III. Rational Numbers	IV. {0, 1, -1}	
A: I and II	B: I, II, III and IV	
C: I and III	D: I, II and IV	E: NOTA

29. The Fibonacci sequence is defined recursively as F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2) for all n >1. What is the sum of the first 6 Fibonacci numbers?
A: 7
B: 20
C: 13
D: 12
E: NOTA

30. A complex number is in the form a + bi, where a and b are real numbers, and $i^2 = -1$. Gaussian integers (denoted as $\mathbb{Z}[i]$) are complex numbers a + bi, where a and b are integers.

What property of real integers is not true for Gaussian integers?

A: Commutativity of Multiplication	B: Unique Factorization	
C: Associativity of Multiplication	D: Totally Ordered	E: NOTA