- C 1. Using synthetic division, find roots are 3, $\frac{1}{2}$, -2. Largest root is 3.
- A 2. Factoring gives $4\sqrt{1+x^2} 3\sqrt{1+x^2}$ which is $\sqrt{1+x^2}$.
- C 3. When roots are equal, the discriminant = 0. $p^2 - 4 \cdot 1 \cdot 2p = 0$, $p^2 - 8p = 0$, p = 0.8. There are 2 distinct values for n.
- C 4. Find the vertex by completing the square: $y = -2(x^2 - 6x + 9) - 24 + 18$. The vertex is (3, -6). Since this parabola opens down, the range would be $(-\infty, -6]$.

A 5.
$$f(0+1) = f(0) f(1) = -2;$$

 $f(0) = 1; f(1+1) = f(1) f(1) = 4;$
 $f(2) = 4; f(1+2) = f(1) f(2) = -2 \cdot 4;$
 $f(3) = -8$

B 6.
$$\frac{1}{x+2} - \frac{3}{x-1} + \frac{1}{x^2 + x - 2}$$
, factor $x^2 + x - 2$ to
find it is the common denominator.
 $\frac{x-1-3x-6+1}{x^2 + x - 2} = \frac{-2x-6}{x^2 + x - 2}$

- A 7. $f(x) = -x^2 + 1, g(x, y) = x(1 + y)$ To find, g(f(2),3); f(2) = -3;g(-3,3) = -3(4) = -12
- B 8. Since *a* is negative 1-a is positive so use $(x-1)^2, (1-a-1)^2 = (-a)^2 = a^2$.
- D 9. To find what must be done to make $\frac{1}{x+3} = x$, we must find the inverse of $\frac{1}{x+3}$ then substitute this into $\frac{1}{2-5x}$. So $x = \frac{1}{y+3}, x(y+3) = 1, y+3 = \frac{1}{x}, y = \frac{1}{x} - 3$.

This gives
$$\frac{1}{2-5\left(\frac{1}{x}-3\right)} = \frac{1}{2-\frac{5}{x}+15} = \frac{1}{17-\frac{5}{x}} = \frac{1}{\frac{17x-5}{x}} = \frac{x}{17x-5}.$$

A 10. Find the vertex of the parabola: $y = -2(x^2 - 2x + 1) - 1 + 2$, $y = -2(x - 1)^2 + 1$ making the vertex (1,1). Since the line passes through the origin (0,0) the slope of the line is 1, which makes the equation of the line x = y.

B 11.
$$\frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a+b}} = \frac{\frac{a+b}{ab}}{\frac{1}{a+b}} = \frac{(a+b)^2}{ab}.$$

C 12.
$$\sqrt{x+1} + \sqrt{x-1} = 3(\sqrt{x+1} - \sqrt{x-1}),$$

 $\sqrt{x+1} + \sqrt{x-1} = 3\sqrt{x+1} - 3\sqrt{x-1},$
 $4\sqrt{x-1} = 2\sqrt{x+1},$
 $16x - 16 = 4x + 4, 12x = 20, x = \frac{5}{3}.$

- D 13. We need to find the values for $p \text{ and } q \cdot \frac{p}{q} = \frac{\pm 1, \pm 3, \pm 5, \pm 15}{\pm 1, \pm 2} =$ $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$ which is 16 POSSIBLE roots.
- E 14. The line has a slope of 4 so the line perpendicular to this would have a slope of $-\frac{1}{4}$ and containing (-1,3). The equation would be x+4y=11.
- A 15. Find the possible integer roots which would be $\pm 1, \pm 3$. Using synthetic or substitution none of these satisfy the equation.

- C 16. Set the denominator equal to zero.
- B 17. Completing the square on the left hand

sides gives $\left(x^2 - 3x + \frac{9}{4}\right) + 2 - \frac{9}{4} = \left(x - \frac{3}{2}\right)^2 - \frac{1}{4}$ so the value of *p* is $-\frac{1}{4}$.

C 18. Doing synthetic division with -3 gives the new equation as $2x^3 - 9x^2 + 14x - 5 = 0$.

The new possible roots are now $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$.

Trying synthetic division gives $\frac{1}{2}$ as a root. From the original equation, the sum of the roots

- is $\frac{3}{2}$. The sum of the real roots is $-3 + \frac{1}{2} = -\frac{5}{2}$. So subtracting that from the sum of the roots gives the sum of the imaginary roots as 4.
- E 19. If 5 is a root, x-5 is a factor. Doing division with this makes the remainder 0.
- A 20. f(x) must be positive. Factoring the expression under the root gives $\sqrt{x(x-1)(x+1)}$. The critical values for x are 0, 1,-1. Put these on a number line and test the zones. This gives $[-1,0] \cup [1,\infty)$.
- D 21. Switch x and y and solve for y.

 $x = \frac{1}{y+3}, x(y+3) = 1, y+3 = \frac{1}{x}, y = \frac{1}{x} - 3$

B 22. The remainder when $y^2 + 2y + 4s$ is divided by y - 1 is 4s - 2. The remainder when $y^2 + sy + 2s^2$ is divided by y - 1 is $2s^2 + s + 1$. Set these two remainders equal and solve for s. $2s^2 + s + 1 = 4s - 2$. $2s^2 - 3s + 3 = 0$. The sum of the roots is $\frac{-b}{a} = \frac{3}{2}$ which is $1\frac{1}{2}$.

B 23.
$$f(g(x)) = 2^{\log_2 x}$$
 which equals x.

C 24. $(x-4)(x-5) = x^2 - 9x + 20, A = -9, B = 20$ $(x-2)(x-9) = x^2 - 11x + 18, C = -11, D = 18$ $x^2 - 9x + 18 = (x-6)(x-3)$ so the roots are 6 or 3.

C 25.
$$g(2) = -1, f(-1) = 4.$$

C 26. Using the information in the problem, the points on the graph are (-2,0), (1,0), (0,0). Substituting, we get three equations: $\begin{cases} 0 = -8 + 4a - 2b + c \\ 0 = 1 + a + b + c \\ 0 = 0 + 0 + 0 + c \end{cases}$ Substitute this into the first two equations to get $\begin{cases} 4a - 2b = 8 \\ a + b = -1 \end{cases}$. Solve this system to get a = 1, b = -2. So the original equation should now be $P(x) = x^3 + x^2 - 2x, P(-1) = 2/2$

C 27.
$$8^{-\frac{2}{3}} = \frac{1}{4}$$

- B 28. Let g(x) = y. Substituting y into f(x), we get y-3. Since this is $(f \circ g)(x)$, $y-3 = x^2 + 1$, $y = x^2 + 4$ which is g(x).
- D 29. Square both sides and put in standard form gives a hyperbola. $1 = \frac{y^2}{4} - \frac{x^2}{16}$. Graphing by hand shows that it is the lower half.
- D 30. Complete the square to find the vertex. The maximum value would be the y-coordinate of the vertex. $y = -\left(x^2 + 5x + \frac{25}{4}\right) + 2 + \frac{25}{4}$. $2 + \frac{25}{4} = \frac{33}{4}$.