Answers:

0.	252°
1.	$\frac{2\sqrt{2}}{3}$
2.	$\frac{1}{10}$
3.	3
4.	2+3 <i>i</i>
5.	80
6.	1/52
7.	18
8.	4π
9.	$-\frac{1}{3}$ and $\frac{7}{3}$
10.	1/ /18
11.	√337
12.	$6\sqrt{3}-6$
13.	$\frac{20+6\sqrt{10}}{5}$
14.	3

Theta Ciphering

Solutions:

0. Let x be the larger arc. Then
$$\frac{x - (360 - x)}{2} = 72 \Rightarrow 2x - 360 = 144 \Rightarrow 2x = 504$$

 $x = 252^{\circ}$

1. The circle encloses
$$\frac{1}{3}$$
 of the area enclosed by the ellipse, so $3r = 3b = a$. Therefore,
 $c = b\sqrt{3^2 - 1^2} = 2\sqrt{2}b = \frac{2\sqrt{2}}{3}a \Rightarrow \frac{c}{a} = \frac{2\sqrt{2}}{3}$

2.
$$(\log x)^2 = \log(x^{\log x}) = \log(100x) = \log x + \log 100 = \log x + 2$$

 $\Rightarrow (\log x)^2 - \log x - 2 = 0 \Rightarrow (\log x - 2)(\log x + 1) = 0 \Rightarrow \log x = 2 \text{ or } -1$
 $\Rightarrow x = 100 \text{ or } \frac{1}{10}$

3. Perpendicular bisector of line segment goes through the point (5,3) and has slope $-1 \Rightarrow y = -x+8$. This line intersects y = 2x-1 at the point (3,5).

4.
$$2(a+bi)+5(a-bi)=14-9i \Rightarrow 7a=14 \text{ and } -3b=-9 \Rightarrow a=2 \text{ and } b=3 \Rightarrow z=2+3i$$

5.
$$\binom{5}{2} (x^2)^2 (2y)^3 = 80x^4 y^3$$

6.
$$\frac{50!-49!}{51!-2(49!)} = \frac{49(49!)}{(51\cdot 50-2)(49!)} = \frac{49}{2548} = \frac{1}{52}$$

7.
$$0 \le 10 - x \le 2 \Longrightarrow 8 \le x \le 10 \Longrightarrow a + b = 8 + 10 = 18$$

8. This is the area enclosed by the circle centered at the origin with radius 4 that is outside the ellipse centered at the origin with major axis of length 8 and minor axis of length 6. Therefore, the area is $\pi(4^2 - 4 \cdot 3) = 4\pi$.

9. If
$$x \le 0$$
, the equation is $-x + (1-x) + (2-x) = 4 \Rightarrow 3 - 3x = 4 \Rightarrow 3x = -1 \Rightarrow x = -\frac{1}{3}$. If $0 < x \le 1$, the equation is $x + (1-x) + (2-x) = 4 \Rightarrow 3 - x = 4 \Rightarrow x = -1$. If $1 < x \le 2$, the equation is $x + (x-1) + (2-x) = 4 \Rightarrow x + 1 = 4 \Rightarrow x = 3$. If $x > 2$, the equation is

- $x + (x-1) + (x-2) = 4 \Rightarrow 3x 3 = 4 \Rightarrow 3x = 7 \Rightarrow x = \frac{7}{3}$. The only solutions which are in the appropriate ranges are $-\frac{1}{3}$ and $\frac{7}{3}$.
- 10. There are 6! = 720 possible distributions of checks into the envelopes. There are $\binom{6}{3} = 20$ different selections for correct checks, but there are only 2 different ways for the incorrect checks to be distributed. Thus, there are 40 different possible distributions, giving the probability as $\frac{40}{720} = \frac{1}{18}$.

11.
$$c^2 = 8^2 + 13^2 - 2(8)(13)\cos 120^\circ = 64 + 169 + 104 = 337 \Longrightarrow c = \sqrt{337}$$

- 12. $288\pi = \frac{4}{3}\pi r^3 \Rightarrow r^3 = 216 \Rightarrow r = 6. \quad 3 = \frac{4\pi R^2}{4\pi r^2} = \frac{R^2}{r^2} \Rightarrow R^2 = 3 \cdot 6^2 = 108, \text{ so } R = 6\sqrt{3}.$ Therefore, the paint is of thickness $6\sqrt{3} - 6$.
- 13. Since the slope is 3, for each increase of 3 in the *y*-coordinate, the armadillo walks $\sqrt{10}$ up the line. Since the armadillo walks 4 units, the increase in the *y*-coordinate

is
$$\frac{4 \cdot 3}{\sqrt{10}} = \frac{6\sqrt{10}}{5}$$
, making the new *y*-coordinate $\frac{20 + 6\sqrt{10}}{5}$.

14.
$$\frac{(8000000)^{\frac{2}{3}}\sqrt{0.0009}}{(20)^2} = \frac{200^2(.03)}{20^2} = 100(.03) = 3$$