#0 Mu School Bowl MA⊕ National Convention 2011

$$A = \lim_{x \to \infty} \left(2 \tan^{-1} x \right)$$

$$B = \lim_{x \to 2} \frac{x^2 + 8x - 20}{x^3 - 8}$$

$$C = \lim_{x \to 0^+} x^x$$

$$D = \lim_{x \to \pi} \tan x$$

Find the value of A+B+C+D.

#0 Mu School Bowl MA⊕ National Convention 2011

$$A = \lim_{x \to \infty} \left(2 \tan^{-1} x \right)$$

$$B = \lim_{x \to 2} \frac{x^2 + 8x - 20}{x^3 - 8}$$

$$C = \lim_{x \to 0^+} x^x$$

$$D = \lim_{x \to \pi} \tan x$$

Find the value of A+B+C+D.

#1 Mu School Bowl MA⊕ National Convention 2011

For the displacement function $f(t) = 2t^2 - 3t - 2$, let:

A = the average velocity over the interval [1,2]

B =the instantaneous velocity at t = 1

C = the average velocity over the interval [2,3]

D = the instantaneous velocity at t = 2

Find the value of $\frac{A-B}{C-D}$.

#1 Mu School Bowl MA⊖ National Convention 2011

For the displacement function $f(t) = 2t^2 - 3t - 2$, let:

A = the average velocity over the interval [1,2]

 $\mathit{B} =$ the instantaneous velocity at $\mathit{t} = 1$

C = the average velocity over the interval [2,3]

D = the instantaneous velocity at t = 2

Find the value of $\frac{A-B}{C-D}$.

#2 Mu School Bowl MA⊖ National Convention 2011

$$A = \lim_{x \to -1} \frac{x^3 + x + 2}{2x^4 + 3x + 1}$$

$$B = f''(-3)$$
, where $f(x) = \frac{x-2}{x+1}$

C =the maximum value of $f(x) = -7x^{\frac{3}{2}} + 21x - 18$

D = -1 + the number of points of inflection of $f(x) = x^2 - 2x + 2x \ln x$ Find the value of *ABCD*.

#2 Mu School Bowl MA⊖ National Convention 2011

$$A = \lim_{x \to -1} \frac{x^3 + x + 2}{2x^4 + 3x + 1}$$

$$B = f''(-3)$$
, where $f(x) = \frac{x-2}{x+1}$

$$C = \text{ the maximum value of } f(x) = -7x^{\frac{3}{2}} + 21x - 18$$

$$D = -1$$
 + the number of points of inflection of $f(x) = x^2 - 2x + 2x \ln x$
Find the value of *ABCD*.

#3 Mu School Bowl

MA National Convention 2011

What is the minimum value of 2x + y, given that xy = n and x and y are both positive?

- A =the solution when n = 50
- B =the solution when n = 128
- C =the solution when n = 162
- D = the solution when n = 288
- Find the value of $\frac{\left(A^2 + \sqrt{C}\right)D}{B}$.

#3 Mu School Bowl MA⊕ National Convention 2011

What is the minimum value of 2x + y, given that xy = n and x and y are both positive?

- A =the solution when n = 50
- B =the solution when n = 128
- C =the solution when n = 162
- D = the solution when n = 288

Find the value of
$$\frac{\left(A^2 + \sqrt{C}\right)D}{B}$$
.

#4 Mu School Bowl MA® National Convention 2011

For the function $f(x) = x^3 - x^2 - x + 1$:

A =the sum of the x-intercepts of f

B = the sum of the x-coordinates of the relative extrema of f

C = the sum of the x-coordinates of the inflection points of f

D = the sum of the *y*-coordinates of all of the above points

Find the value of $(4A+3B+3C)\sqrt{D}$.

#4 Mu School Bowl MA⊕ National Convention 2011

For the function $f(x) = x^3 - x^2 - x + 1$:

A =the sum of the x-intercepts of f

B = the sum of the x-coordinates of the relative extrema of f

C = the sum of the x-coordinates of the inflection points of f

D = the sum of the *y*-coordinates of all of the above points

Find the value of $(4A+3B+3C)\sqrt{D}$.

#5 Mu School Bowl

MA National Convention 2011

A diver jumps from a diving board 32 feet above water, and his position in feet at time t is determined by the function $s(t) = -16t^2 + 24t + 32$.

A = the time t the diver hit the water

B = the time t the diver was at the peak of his dive

C = the diver's velocity on impact with the water

Find the value of $\lfloor \lfloor A \rfloor B \rfloor \left(\frac{C}{8} \right)^2$, where $\lfloor x \rfloor$ represents the greatest integer n with $n \le x$.

#5 Mu School Bowl MA⊖ National Convention 2011

A diver jumps from a diving board 32 feet above water, and his position in feet at time t is determined by the function $s(t) = -16t^2 + 24t + 32$.

A = the time t the diver hit the water

B = the time t the diver was at the peak of his dive

C = the diver's velocity on impact with the water

Find the value of $\lfloor \lfloor A \rfloor B \rfloor \left(\frac{C}{8} \right)^2$, where $\lfloor x \rfloor$ represents the greatest integer n with $n \le x$.

#6 Mu School Bowl MA⊕ National Convention 2011

For the function $f(x) = \frac{\ln x}{x-1}$, let L(x) be the linear approximation to the graph of f at x = e.

A =the slope of y = L(x)

B =the x-intercept of y = L(x)

C = the y-intercept of y = L(x)

D = L(1)

Find the value of $\frac{A(B+e)}{CD}$.

#6 Mu School Bowl MA⊕ National Convention 2011

For the function $f(x) = \frac{\ln x}{x-1}$, let L(x) be the linear approximation to the graph of f at x = e.

A =the slope of y = L(x)

B = the x-intercept of y = L(x)

C = the y -intercept of y = L(x)

D = L(1)

Find the value of $\frac{A(B+e)}{CD}$.

#7 Mu School Bowl MA⊖ National Convention 2011

$$A = \int_{1}^{3} \frac{x}{x^{2} + 1} dx$$

$$B = \int_{-2}^{1} (x^{3} - 4x^{2} + 2x - 3) dx$$

$$C = \int_{-2}^{2} \frac{\tan^{-1} x}{1 + x^{2}} dx$$

$$D = \int_0^1 \left(\sum_{n=1}^{37} (n+1) x^n \right) dx$$

Find the value of $\frac{Be^{2A}}{C+D}$.

#7 Mu School Bowl MA⊕ National Convention 2011

$$A = \int_{1}^{3} \frac{x}{x^{2} + 1} dx$$

$$B = \int_{-2}^{1} \left(x^{3} - 4x^{2} + 2x - 3 \right) dx$$

$$C = \int_{-2}^{2} \frac{\tan^{-1} x}{1 + x^{2}} dx$$

$$D = \int_{0}^{1} \left(\sum_{n=1}^{37} (n+1) x^{n} \right) dx$$

Find the value of $\frac{Be^{2A}}{C+D}$.

#8 Mu School Bowl MA© National Convention 2011

Let $f(x) = \int_2^x (t^4 + 3t^3 - 2t^2 + 17t - 14) dt$. Find the value of $f(2) + \sum_{n=1}^{\infty} f^{(n)}(2)$.

#8 Mu School Bowl MA® National Convention 2011

Let $f(x) = \int_2^x (t^4 + 3t^3 - 2t^2 + 17t - 14) dt$. Find the value of $f(2) + \sum_{n=1}^{\infty} f^{(n)}(2)$.

#9 Mu School Bowl MA⊕ National Convention 2011

Given the system of parametric equations $\begin{cases} x = -t + \cos t \\ y = t^2 + \sin t \end{cases}$, find the value of $\frac{dy}{dx}\Big|_{t=\frac{\pi}{2}} + \frac{d^2y}{dx^2}\Big|_{t=\frac{\pi}{2}} + \frac{d^3y}{dx^3}\Big|_{t=\frac{\pi}{2}}$.

#9 Mu School Bowl MA⊗ National Convention 2011

Given the system of parametric equations $\begin{cases} x = -t + \cos t \\ y = t^2 + \sin t \end{cases}$, find the value of $\frac{dy}{dx}\Big|_{t=\frac{\pi}{2}} + \frac{d^2y}{dx^2}\Big|_{t=\frac{\pi}{2}} + \frac{d^3y}{dx^3}\Big|_{t=\frac{\pi}{2}}$.

#10 Mu School Bowl MA⊕ National Convention 2011

Let
$$f(x) = \frac{1}{4}x^2$$
 and $g(x) = 2x - 3$.

A = the area bounded between f and g

B = the volume obtained by rotating the region bounded by f and g about the x-axis

C = the volume obtained by rotating the region bounded by f and g about the y-axis

Find the value of $\frac{AB}{C}$.

#10 Mu School Bowl MA⊖ National Convention 2011

Let
$$f(x) = \frac{1}{4}x^2$$
 and $g(x) = 2x - 3$.

A = the area bounded between f and g

B = the volume obtained by rotating the region bounded by f and g about the x-axis

C = the volume obtained by rotating the region bounded by f and g about the y-axis

Find the value of $\frac{AB}{C}$.

#11 Mu School Bowl MA© National Convention 2011

Consider the differential equation $\frac{dy}{dx} = 2x - y$ with initial condition y(0) = 1. For each of the following, estimate the value of y(0.4), using Euler's Method with given step size:

A =solution with step size $\Delta x = 0.4$

B =solution with step size $\Delta x = 0.2$

C =solution with step size $\Delta x = 0.1$

Find the value of A+B+C, written as a decimal.

#11 Mu School Bowl MA⊖ National Convention 2011

Consider the differential equation $\frac{dy}{dx} = 2x - y$ with initial condition y(0) = 1. For each of the following, estimate the value of y(0.4), using Euler's Method with given step size:

A =solution with step size $\Delta x = 0.4$

B =solution with step size $\Delta x = 0.2$

C =solution with step size $\Delta x = 0.1$

Find the value of A+B+C, written as a decimal.

#12 Mu School Bowl MA© National Convention 2011

List the letters of the series that converge.

$$A: \sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

$$D: \sum_{n=1}^{\infty} \left(\frac{\pi}{4}\right)^n$$

$$B: \sum_{n=0}^{\infty} \frac{\cos(n\pi)}{n+1}$$

$$E: \sum_{n=1}^{\infty} (-1)^n e^{-n^2}$$

$$C: \sum_{n=1}^{\infty} \frac{\left(-3\right)^n}{\left(2n+1\right)!!}$$

$$F: \sum_{n=2}^{\infty} \frac{1}{\ln n}$$

#12 Mu School Bowl MA⊖ National Convention 2011

List the letters of the series that converge.

$$A: \sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

$$D: \sum_{n=1}^{\infty} \left(\frac{\pi}{4}\right)^n$$

$$B: \sum_{n=0}^{\infty} \frac{\cos(n\pi)}{n+1}$$

$$E: \sum_{n=1}^{\infty} (-1)^n e^{-n^2}$$

$$C: \sum_{n=1}^{\infty} \frac{\left(-3\right)^n}{\left(2n+1\right)!!}$$

$$F: \sum_{n=2}^{\infty} \frac{1}{\ln n}$$

#13 Mu School Bowl MA⊖ National Convention 2011

Let
$$f(x) = \frac{\ln x}{x}$$
.

$$A = f'(1)$$

$$B = \int_{1}^{e} f(t) dt$$

$$C = f'(e^2)$$

$$D = \int_1^{e^4} f(t) dt$$

Find the value of $\frac{ABD}{C}$.

#13 Mu School Bowl MA⊖ National Convention 2011

Let
$$f(x) = \frac{\ln x}{x}$$
.

$$A = f'(1)$$

$$B = \int_{1}^{e} f(t) dt$$

$$C = f'(e^2)$$

$$D = \int_1^{e^4} f(t) dt$$

Find the value of $\frac{ABD}{C}$.

#14 Mu School Bowl MA⊕ National Convention 2011

Let
$$f(x) = e^{1-x}$$
.

$$A = f'(2011)$$

$$B = f''(2011)$$

$$C = f'''(2011)$$

$$D = f^{(4)}(2011)$$

Find the value of
$$\frac{A}{B} + \frac{A}{C} + \frac{A}{D} + \frac{B}{A} + \frac{B}{C} + \frac{B}{D} + \frac{C}{A} + \frac{C}{B} + \frac{C}{D} + \frac{D}{A} + \frac{D}{B} + \frac{D}{C}$$
.

#14 Mu School Bowl MA© National Convention 2011

Let
$$f(x) = e^{1-x}$$
.

$$A = f'(2011)$$

$$B = f''(2011)$$

$$C = f'''(2011)$$

$$D = f^{(4)}(2011)$$

Find the value of
$$\frac{A}{B} + \frac{A}{C} + \frac{A}{D} + \frac{B}{A} + \frac{B}{C} + \frac{B}{D} + \frac{C}{A} + \frac{C}{B} + \frac{C}{D} + \frac{D}{A} + \frac{D}{B} + \frac{D}{C}$$
.