For all questions, answer choice "E) NOTA" means none of the above answers is correct.

- 1. What is the area bounded by the graphs of $y=9-x^2$ and the *x*-axis?
- A) 42 B) 36 C) 30 D) 24 E) NOTA

2. What is the average value of the function $f(x) = x^3 - 5x$ on the interval [0,3]?

A) 4 B) $\sqrt{3}$ C) $-\frac{3}{4}$ D) -2 E) NOTA

3. Evaluate: $\int x\sqrt{3x-1}dx$

A)
$$\frac{9x-2}{2\sqrt{3x-1}} + C$$

B) $\frac{x(3x-1)^{\frac{3}{2}}}{15} - \frac{2(3x-1)^{\frac{5}{2}}}{3} + C$
C) $\frac{2(9x+2)(3x-1)^{\frac{3}{2}}}{135} + C$
D) $\frac{x^2(3x-1)^{\frac{3}{2}}}{9} + C$
E) NOTA

4. If
$$\int_{6}^{10} f(x) dx = A$$
, express $\int_{-1}^{3} (f(x+7)+1) dx$ in terms of A .
A) $A+10$ B) $4A+32$ C) $A+4$ D) $2A+10$ E) NOTA
5. Evaluate: $\int_{-10}^{10} \sqrt{100-x^2} dx$
A) 50π B) 25π C) 100π D) 200π E) NOTA

6. Evaluate: $\int \tan^2 x dx$

A) $2\tan x \sec^2 x + C$ B) $x + \sec^2 x + C$ C) $\frac{\sin^3 x}{3\cos x} + C$ D) $\frac{1}{3}\tan^3 x + C$ E) NOTA

7. For
$$x \ge 2011$$
, $F(x) = \int_0^{x^2} \frac{t^2 \sin t}{1 + \sqrt{t}} dt$. Find $F'(x)$.

A)
$$\frac{4x\sin(x^2)}{(1+x)^2}$$
 B) $4x^3\cos(x^2)$ C) $\frac{x^4\sin(x^2)}{1+|x|}$ D) $\frac{2x^5\sin(x^2)}{1+x}$ E) NOTA

- 8. The velocity of a particle moving along the *x*-axis is given by the function $v(t) = 2t^3 + 15$ for $t \ge 0$. Find the total distance traveled by the particle from t = 2 to t = 4.
- A) 150 B) 112 C) 72 D) 30 E) NOTA
- 9. Let *R* be the region bounded by the graphs of y = x and $y = x^2$. Which of the following integrals is equal to the volume produced when *R* is rotated about the line y = -2?

A)
$$\pi \int_0^1 (x - x^2 + 2)^2 dx$$

B) $\pi \int_0^1 ((x - 2)^2 - (x^2 - 2)^2) dx$
C) $\pi \int_0^1 (x^2 - x^4) dx$
D) $\pi \int_0^1 ((x^2 + x + 4)(x - x^2)) dx$
E) NOTA

- 10. Let $f(x) = x^3 + 1$ and let $g(x) = f^{-1}(x)$. Find the value of $\int_1^2 g(x) dx$.
- A) $\frac{3}{4}$ B) $\frac{4}{13}$ C) $\frac{5}{4}$ D) $\frac{4}{19}$ E) NOTA

11. Evaluate:
$$\int_{0}^{\sqrt{3}} \frac{2x+3}{\sqrt{4-x^2}} dx$$

A) 3π B) $2\pi + 1$ C) $\pi + 2$ D) 3 E) NOTA

- 12. The region in the third quadrant bounded by the graphs of $y = x\sqrt{x+1}$ and y = 0 is rotated about the *x*-axis. Find the volume of the resulting solid.
- A) $\frac{\pi}{12}$ B) $\frac{3\pi}{8}$ C) 2π D) $\frac{4\pi\sqrt{2}}{105}$ E) NOTA

13. Use the Trapezoidal Rule with two equal subdivisions to approximate $\int_{1}^{3} \frac{1}{(x+1)^2} dx$.

A) $\frac{77}{288}$ B) $\frac{619}{2400}$ C) $\frac{281}{1152}$ D) $\frac{109}{432}$ E) NOTA

14. Water is pumped into a tank at a rate of $3\sqrt{t+5}$ gallons/minute, with t representing the time, in minutes, elapsed after the pumping begins, with $0 \le t \le 20$. At time t = 4, the tank contains 10 gallons of water. How many gallons of water are in the tank at t = 11?

```
A) 69 B) 74 C) 79 D) 84 E) NOTA
```

15. Let *f* and *g* be continuous functions that are even and odd, respectively. Find the sum of the missing entries in the following table that gives values of definite integrals:

	[X	-2	-1	0	1	2	
		$\int_{-x}^{x} f(t) dt$	-6		0	5		
		$\int_0^x g(t) dt$	4	2				
A) 5	B)	7	C) 9		D) 1	1	E) NOTA

16. Evaluate: $\int_{1}^{2} 2^{3x} dx$

- A) 180 B) 45ln8 C) $\frac{100}{7}$ D) $\frac{56}{\ln 8}$ E) NOTA
- 17. Find the volume of the solid produced when the region bounded by the graphs of $y=2x-5x^{\frac{2}{3}}+3$, where $0 \le x \le 1$, and the *x*-axis is rotated about the line x=2.
- A) $\frac{7\pi}{12}$ B) $\frac{13\pi}{44}$ C) $\frac{57\pi}{44}$ D) $\frac{41\pi}{12}$ E) NOTA

18. If $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$, which of the following must be true?

- A) $f(x) \le g(x)$ for all x in the interval [a,b]B) $f'(x) \le g'(x)$ for all x in the interval (a,b)C) $f''(x) \le g''(x)$ for all x in the interval (a,b)D) $\int_{c}^{d} f(x) dx \le \int_{c}^{d} g(x) dx$ where a < c < d < b E) NOTA
- 19. Let f be a continuous, strictly increasing, odd function, where f(x) > 0 whenever x > 0, and let $S = \{-3, -2, -1, 0, 1, 2, 3\}$. Two distinct elements a and b are selected from S. Find the probability that $\int_{a}^{b} f(x) dx \neq 0$.
- A) $\frac{4}{7}$ B) $\frac{5}{7}$ C) $\frac{6}{7}$ D) 1 E) NOTA

- 20. Let *S* be a solid whose base is the region bounded by the graphs of y=5-x, y=0, and x=0. If the cross-sections of this solid perpendicular to the *y*-axis are squares, find the volume of *S*.
- A) $\frac{625}{4}$ B) $\frac{125}{3}$ C) $\frac{625\pi}{4}$ D) $\frac{125\pi}{3}$ E) NOTA 21. Evaluate: $\int_{0}^{\frac{\pi}{2}} x \cos x dx$ A) 1 B) $1 - \frac{\sqrt{2}}{2}$ C) 2 D) $\frac{\pi}{2} - 1$ E) NOTA

22. Which of the following is a solution to the differential equation $\frac{dy}{dx} = 3(xy)^2 + 12x^2$?

A)
$$y = 2\sin(x^3 + 1)$$
 B) $y = 5 - \frac{x}{3(x^2 + 4)^2}$ C) $y = 5x^3 - 2011$ D) $y = \sqrt{10e^{x^3} - 4}$

E) NOTA

- 23. Find the *x*-coordinate of the centroid of the region bounded by the graphs of y = x + 2and $y = 4x - x^2 + 2$. Assume the region has uniform density.
- A) $\frac{3}{10}$ B) $\frac{3}{4}$ C) $\frac{3}{2}$ D) $\frac{9}{4}$ E) NOTA
- 24. Let *R* be a region bounded by a nonnegative quadratic function *f* and the *x*-axis on the interval [a,b] with a < b. Define *A* to be the exact area of *R*, *T* to be the Trapezoidal Rule estimate of *A* with 2010 equal partitions of [a,b], and *S* to be the Simpson's Rule estimate of *A* with 2008 equal partitions of [a,b]. If f'(x) > 0 and f''(x) < 0 on the interval (a,b), which of the following must be true?
- A) T < A < S B) $S \le A < T$ C) T < S = A D) $A \le S < T$ E) NOTA

25. Let
$$I = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i/n}{1 + (i/n)} \right)$$
. Find the value of e^{i} .

A)
$$e$$
 B) $\frac{e}{2}$ C) $\frac{e}{3}$ D) $\frac{e}{4}$ E) NOTA

26. Two real numbers x and y are randomly chosen from the interval (0,1). What is the probability that the closest integer to $\frac{x}{y}$ is odd?

A)
$$\frac{\pi - 1}{4}$$
 B) $\frac{1}{2}$ C) $\frac{\pi - 2}{2}$ D) $\frac{6}{\pi^2}$ E) NOTA

Use the following table for questions 27-28. Assume f and g are twice-differentiable.

X	-2	-1	0	1	2
f(x)	-5	1	1	1	7
g(x)	9	3	1	3	9
f'(x)	11	2	-1	2	11
g'(x)	-8	-4	0	4	8

27. Evaluate: $\int_{-2}^{1} (f'(x)g(x) + f(x)g'(x)) dx$

A) 16 B) 32 C) 48 D) 64 E) NOTA
28. Evaluate:
$$\int_{-1}^{2} \left(\frac{f'(x)g(x) - f(x)g'(x)}{(f(x) + g(x))^{2}} \right) dx$$

A) $\frac{1}{16}$ B) $\frac{1}{8}$ C) $\frac{3}{16}$ D) $\frac{1}{4}$ E) NOTA
29. Evaluate: $\int_{-2}^{1} |x + 1| dx$
A) $\frac{1}{2}$ B) $\frac{3}{2}$ C) $\frac{5}{2}$ D) $\frac{7}{2}$ E) NOTA
30. Evaluate: $\int_{\frac{7}{2}}^{\frac{7}{2}} \frac{\cot^{3} x}{\csc x} dx}{\frac{7}{4} \csc x} dx}$
A) $\frac{3\sqrt{2} - 4}{2}$ B) $\frac{3\sqrt{2} - 4}{4}$ C) $\frac{3\sqrt{2} - 2}{2}$ D) $\frac{3\sqrt{2} - 2}{4}$ E) NOTA