Answers:

- 1. D
- 2. E
- 3. B
- 4. D
- 5. A
- 6. C 7. C
- 7. C 8. C
- 9. D
- 10. C
- 11. C
- 12. C
- 13. A
- 14. D
- 15. B
- 16. D
- 17. C
- 18. D
- 19. A
- 20. B
- 21. B
- 22. E
- 23. A
- 24. C
- 25. A
- 26. B
- 27. C
- 28. E
- 29. C
- 30. A

Solutions:

- 1. Since $\angle A$ and $\angle C$ are both supplementary to $\angle B$, $\angle A$ and $\angle C$ must be equal. Thus, $3x + 16 = 5x - 24 \Longrightarrow 2x = 40 \Longrightarrow x = 20 \Longrightarrow m \angle A = m \angle C = 3 \cdot 20 + 16 = 76^\circ$. Therefore, $m \angle B = 104^\circ$.
- 2. Any three points are always coplanar.

3. The midpoint is
$$\left(\frac{-4+19}{2}, \frac{-14-10}{2}, \frac{27+3}{2}\right) = (7.5, -12, 15).$$

- 4. An "only if" statement is the same as an "if-then" in the same order. Therefore, the statement is equivalent to "If Mr. Snube is happy, then the weather is not good."
- 5. On a sphere, the sum of the angles of a triangle must sum to more than 180° and less than 540°, so choice A would not work for a triangle.
- 6. Since $m \angle ABE = 8^\circ$, $m \angle ECD = 8^\circ$ also. Therefore, *DE* is $\frac{8}{360} = \frac{1}{45}$ of the total circumference, so the total circumference is 60.45 = 2700 miles.
- 7. Since a = b, in line (8), division by 0 is occurring, so that is the error.
- 8. *K* itself is false, having a true premise and false conclusion. The converse of *K* is $q \rightarrow p$, which is a false premise implying a true conclusion, so the converse is true. The inverse of *K* is $\sim p \rightarrow \sim q$, which is the contrapositive of the converse, thus having the same truth value, so it is true. The contrapositive of *K*, $\sim q \rightarrow \sim p$, has the same truth value as *K*, so it is false. Thus, two of the statements are true.
- 9. Since $m_{AB} = \frac{14-5}{24-12} = \frac{9}{12} = \frac{3}{4}$, \overline{AB} is not the hypotenuse of the triangle. Either \overline{BC} or \overline{AC} is the other leg, which would be perpendicular to \overline{AB} . $m_{BC} = \frac{14-k}{24-0}$ $= \frac{14-k}{24}$, so if \overline{BC} is the other leg, then $\frac{14-k}{24} = -\frac{4}{3} \Rightarrow k = 46$, but this would make \overline{AC} the hypotenuse, and $m_{AC} = \frac{5-k}{12} = -\frac{41}{12} \neq -\frac{7}{24}$, so this is not possible. Therefore, \overline{AC} is the other leg, making $\frac{5-k}{12} = -\frac{4}{3} \Rightarrow k = 21$, which makes $m_{BC} = \frac{14-k}{24} = -\frac{7}{24}$.

Therefore, \overrightarrow{BC} goes through the two points (0,21) and (24,14), making its equation $y = -\frac{7}{24}x + 21$, and its *x*-intercept would satisfy $0 = -\frac{7}{24}x + 21 \Rightarrow \frac{7}{24}x = 21$ $\Rightarrow x = 72$

- 10. The ball has radius 6, and the first octant wedge contains $\frac{1}{8}$ of the sphere surface plus $\frac{3}{4}$ of the disk with radius 6 as its surface. Thus, the total surface area of the region is $\frac{3}{4}(\pi \cdot 6^2) + \frac{1}{8}(4\pi \cdot 6^2) = 27\pi + 18\pi = 45\pi$.
- 11. $m \angle W = 180^{\circ} 67^{\circ} 57^{\circ} = 56^{\circ}$, and the shortest side of the triangle is opposite the smallest angle, which is $\angle W$, thus making the shortest side \overline{FB} .
- 12. Isometries preserve length measurements, and translations, reflections, and rotations all do that. Dilations scale the graphs up or down, so they are not isometries.
- 13. The circle with larger radius encloses more area, so we just need to compare the radii lengths. Raising both radii to the 30th power, gives measurements of $(\sqrt[3]{2})^{30} = 2^{10} = 1024$ and $(\sqrt[10]{10})^{30} = 10^3 = 1000$, so circle *J* encloses more area.
- 14. A is angle-angle-angle, which only shows similarity, not congruence. B is side-sideangle, which is not a congruence condition. C does not compare corresponding parts of the two triangles. D is side-angle-side, which is a congruence condition, so this would show the two triangles are congruent.
- 15. The altitudes are perpendicular to the side lengths, so their slopes are negative reciprocals of the slopes of the side lengths. The three sides' slopes are

 $\frac{-2-4}{7-1} = \frac{-6}{6} = -1$, $\frac{6-4}{-3-1} = \frac{2}{-4} = -\frac{1}{2}$, and $\frac{-2-6}{7-(-3)} = \frac{-8}{10} = -\frac{4}{5}$, so the slopes of the

three altitudes are 1, 2, and $\frac{5}{4}$, and the sum of the slopes is $1+2+\frac{5}{4}=\frac{17}{4}$.

16. Within a single square, the center of the coin must lie inside the inner square with side length 1. Therefore, there is a total area of 64 where the center can land. Since the coin lands entirely on the checkerboard, the

total area in which the center can land is a 22×22 section in the center of the checkerboard. Therefore, the probability of the coin landing inside one of the

squares on the checkerboard is $\frac{64}{22^2} = \frac{64}{484} = \frac{16}{121}$.

- 17. \angle *HMA* and \angle *TMA* are the same angle, so they are congruent by the Reflexive Property of Congruence
- 18. The length of the common external tangent is $\sqrt{18^2 - 9^2} = \sqrt{324 - 81} = \sqrt{243} = 9\sqrt{3}$, so the shaded triangle is a 30°,60°,90° right triangle. Therefore, the total length of the pulley is $\frac{2}{3}(2\pi \cdot 12) + \frac{1}{3}(2\pi \cdot 3) + 2(9\sqrt{3}) = 16\pi + 2\pi$ $+18\sqrt{3} = 18\pi + 18\sqrt{3}$.

- 19. Alternate interior angles are on opposite sides of the transversal and inside the two lines, so $\angle 6$ and $\angle 3$ satisfy this (lines do not have to be parallel to have alternate interior angles). $\angle 10$ and $\angle 11$ are equivalent angles, $\angle 12$ and $\angle 8$ are same-side interior angles, as are $\angle 6$ and $\angle 11$.
- 20. The three cities make a 400-500-700 triangle, and $400^2 + 500^2 = 160000 + 250000$ = $410000 \neq 490000 = 700^2$, so this is not a right triangle. Since Cincinnati, OH is due west of Washington, DC, Tallahassee, FL could not possibly be due south of Washington, DC (if it was, there would be a right angle at Washington, DC).
- 21. This revolution results in a cylinder in the middle with radius 7 and height 14, and two cones with radius 7 and height 3. Therefore, the total volume of the solid is $\pi(7)^{2}(14)+2\left(\frac{1}{3}\pi(7)^{2}(3)\right)=686\pi+98\pi=784\pi.$
- 22. The orthocenter, circumcenter, and centroid of a triangle always lie on the Euler line in a triangle, so the triangle is not necessarily any of the given types.
- 23. If \overline{HK} is the longest side, then it satisfies $|\overline{HK}| < 5 + 4 + 10 = 19$. If \overline{HK} is the shortest side, then it satisfies $|\overline{HK}| + 5 + 4 > 10 \Rightarrow |\overline{HK}| > 1$. Therefore, \overline{HK} can take on any integer value from 2 to 18, inclusive, which is 17 different values.

24. Considering the diagonals that connect *X* to consecutive vertices and considering the circle circumscribing the dodecagon, the angle is inscribe and intercepts an arc of measure 30° (since $\frac{360}{12} = 30$). Since this is an inscribed angle, it has measure half the intercepted arc, or 15° .

25.
$$V = \frac{6}{3} (12 + 27 + \sqrt{12 \cdot 27}) = 2(12 + 27 + 18) = 2(57) = 114$$

26. Unfolding the box and drawing a straight line from one vertex to the opposite vertex forms a right triangle with legs of length 15 and 30. Therefore, the hypotenuse is the spider's path, which has length $\sqrt{15^2 + 30^2} = \sqrt{225 + 900} = \sqrt{1125} = 15\sqrt{5}$.

- 27. One pair of opposite sides are parallel and congruent, and they are not the same side (which would create a degenerate quadrilateral), so this must be a parallelogram.
- 28. Kites, trapezoids, rhombi (if they are squares), and rectangles could all be inscribed in circles.
- 29. If \overline{AC} is the longest side, then $|\overline{AB}| = \sqrt{5^2 3^2} = \sqrt{25 9} = \sqrt{16} = 4$. If \overline{AB} is the longest side, then $|\overline{AB}| = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34}$. Therefore, two lengths are possible to make right triangles.
- 30. Let *D* be the point on \overline{AB} such that $|\overline{AD}| = 2\sqrt{2}$ and $|\overline{BD}| = 2\sqrt{6}$. Dropping an altitude from *C* to \overline{AB} intercepts \overline{AB} at point *E*. Checking the Pythagorean Theorem shows that $|\overline{CE}| = \sqrt{4^2 - (2\sqrt{2})^2} = \sqrt{16 - 8} = \sqrt{8} = 2\sqrt{2}$ and $|\overline{CE}|$ $= \sqrt{(4\sqrt{2})^2 - (2\sqrt{6})^2} = \sqrt{32 - 24} = \sqrt{8} = 2\sqrt{2}$ if *E* and *D* are the same point, and since these lengths are equal, *E* and *D* are the same point. Therefore, $m \angle A = 45^\circ$, $m \angle B = 30^\circ$, and $m \angle C = 105^\circ$, meaning $(m \angle A + m \angle C) \cdot m \angle B = (45 + 105) \cdot 30$ $= 150 \cdot 30 = 4500$.