Answers:

1. B
2. A
3. C
4. D
5. D
6. A
7. B
8. B
9. A
10. E
11. A
12. B
13. B
14. D
15. A
16. C
17. D
18. B
19. A
20. D
21. C
22. E
23. C
24. C
25. D
26. A
27. B
28. D
29. D
30. C

Solutions:

1. $\frac{3(4)^{2} \sqrt{3}}{2}=24 \sqrt{3}$
2. $\frac{4}{3} \pi(6)^{3}=288 \pi$
3. $\int_{0}^{2} 3 e^{-3 x} d x=-\left.e^{-3 x}\right|_{0} ^{2}=1-e^{-6}$
4. The two graphs intersect at the points $(5,17)$ and $(-2,3)$, and the area enclosed is

$$
\begin{aligned}
& \int_{-2}^{5}\left((2 x+7)-\left(x^{2}-x-3\right)\right) d x=\int_{-2}^{5}\left(10+3 x-x^{2}\right) d x=\left.\left(10 x+\frac{3}{2} x^{2}-\frac{1}{3} x^{3}\right)\right|_{-2} ^{5}=50+\frac{75}{2}-\frac{125}{3} \\
& +20-6-\frac{8}{3}=\frac{343}{6}
\end{aligned}
$$

5. $\quad \pi \int_{0}^{0.5}\left(\frac{1}{\sqrt[4]{1-x^{2}}}\right)^{2} d x=\pi \int_{0}^{0.5} \frac{1}{\sqrt{1-x^{2}}} d x=\left.\pi\left(\sin ^{-1} x\right)\right|_{0} ^{0.5}=\pi\left(\frac{\pi}{6}\right)=\frac{\pi^{2}}{6}$
6. $\pi \int_{0}^{4}\left((4 \sqrt{x})^{2}-(2 x)^{2}\right) d x=\pi \int_{0}^{4}\left(16 x-4 x^{2}\right) d x=\left.\pi\left(8 x^{2}-\frac{4}{3} x^{3}\right)\right|_{0} ^{4}=\pi\left(128-\frac{256}{3}\right)=\frac{128 \pi}{3}$
7. $2 \pi \int_{1}^{5} x \cdot \frac{5}{x} d x=2 \pi \int_{1}^{5} 5 d x=2 \pi \cdot 5(5-1)=40 \pi$
8. $\quad \int_{0}^{2 / 3}(2-3 x) d x+\int_{2 / 3}^{3}(3 x-2) d x=\left.\left(2 x-\frac{3}{2} x^{2}\right)\right|_{0} ^{2 / 3}+\left.\left(\frac{3}{2} x^{2}-2 x\right)\right|_{2 / 3} ^{3}=\frac{4}{3}-\frac{2}{3}+\frac{27}{2}-6-\frac{2}{3}+\frac{4}{3}$ $=\frac{53}{6}$, so $m+n=53+6=59$
9. $\int_{a}^{b} f(x) d x$ will have the same units as the product of $f(x)$'s and x 's units, so the units are $\frac{\mathrm{ft}^{3}}{\sec ^{2}} \cdot \mathrm{ft} \cdot \sec =\frac{\mathrm{ft}^{4}}{\mathrm{sec}}$
10. None of the answer choices A, B, or C are necessarily true as each of them assume that f is nonnegative on the interval.
11. For later use, the area of a parabolic sector is $\int_{-b / 2}^{b / 2}\left(h-\frac{4 h x^{2}}{b^{2}}\right) d x=\left.2\left(h x-\frac{4 h x^{3}}{3 b^{2}}\right)\right|_{0} ^{b / 2}$ $=2\left(\frac{h b}{2}-\frac{h b}{6}\right)=\frac{2}{3} b h$, so the answer is $\frac{2}{3}(6)(4)=16$.
12. $\int_{0}^{\pi} \sin x d x=\left.(-\cos x)\right|_{0} ^{\pi}=1+1=2$, so $\frac{2}{3}=\int_{0}^{a} \sin x d x=\left.(-\cos x)\right|_{0} ^{a}=1-\cos a \Rightarrow \cos a=\frac{1}{3}$. Because of symmetry of this region, $\cos b=-\frac{1}{3}$, and thus $\sin a=\sin b=\frac{2 \sqrt{2}}{3}$.
Therefore, $\sin (b-a)=\sin b \cos a-\cos b \sin a=\frac{2 \sqrt{2}}{3}\left(\frac{1}{3}+\frac{1}{3}\right)=\frac{4 \sqrt{2}}{9}$.
13. $\frac{\sqrt{3}}{4} \int_{0}^{5}(5-x)^{2} d x=\frac{\sqrt{3}}{4} \cdot-\left.\frac{1}{3}(5-x)^{3}\right|_{0} ^{5}=\frac{125 \sqrt{3}}{12}$
14. The integrand is a cubic, and Simpson's Rule provides exact values for quadratic and cubic functions. Thus, the "approximation" is $\int_{0}^{4}\left(x^{3}-4 x+2\right) d x=\left.\left(\frac{1}{4} x^{4}-2 x^{2}+2 x\right)\right|_{0} ^{4}$ $=64-32+8=40$.
15. This is the probability of selecting a point inside the circle centered at the origin with radius 2 out of all points inside the square with side length 8 centered at the origin. Therefore, the probability is $\frac{\pi(2)^{2}}{8^{2}}=\frac{\pi}{16}$.
16. The area under one arc of the sine graph is $\int_{0}^{\pi} \sin x d x=\left.(-\cos x)\right|_{0} ^{\pi}=1+1=2$, and for each whole number $n, f(n)$ is the area under $2 n$ arcs of the sine graph. Therefore, $f(n)=2 n(2)=4 n . \sum_{n=1}^{100} f(n)=\sum_{n=1}^{100} 4 n=4 \cdot \frac{100 \cdot 101}{2}=20200$.
17. Since $y^{\prime}=5 x^{4},\left.y^{\prime}\right|_{x=5}=5^{5}=3125$. Therefore, the tangent line has equation $y-3125=3125(x-5)$, which has intercepts at the points $(0,-12500)$ and $(4,0)$, so the area enclosed by this line and the axes is $\frac{1}{2}(12500)(4)=25000$.
18. $\int_{0}^{5} g(x) d x=1(0+1+2+3+4)=10$
19. The first graph forms a triangle with vertices at the points $(6,6),(9,3)$, and $(9,9)$. The second graph forms the right half of a circle centered at $(9,6)$ with radius 3 . The area enclosed by these two graphs is $\frac{1}{2}(3)(6)+\frac{1}{2} \pi(3)^{2}=9+\frac{9 \pi}{2}$. By the Theorem of Pappus, the volume is $2 \pi(6)\left(9+\frac{9 \pi}{2}\right)=54 \pi(\pi+2)$.
OR
Using the washer method and the formula for the volume enclosed by a torus, the volume is $\pi \int_{6}^{9}\left(x^{2}-(12-x)^{2}\right) d x+\frac{1}{2} \cdot 2 \pi^{2}(6)(3)^{2}=\pi \int_{6}^{9}(24 x-144) d x+54 \pi^{2}$
$=\left.\pi\left(12 x^{2}-144 x\right)\right|_{6} ^{9}+54 \pi^{2}=\pi(972-1296-432+864)+54 \pi^{2}=108 \pi+54 \pi^{2}$
$=54 \pi(\pi+2)$
20. The graph, in the first quadrant and relevant to the bounded region, consists of line segments connecting the points $(0,6),(1,3),(2,2),(3,3)$, and $(4,6)$, so interpreting the integral as an area, $\int_{0}^{4}(|x-1|+|x-2|+|x-3|) d x=\frac{1}{2}(1)(2)((6+3)+(3+2))=14$.
21. Note that $f(0)=2$ and $f(4)=78$. Since graphs of functions and their inverses are mirror images through the line $y=x$, we get that $\int_{0}^{4} f(x) d x+\int_{2}^{78} h(y) d y=78 \cdot 4$ =312. Therefore, $\int_{2}^{78} h(y) d y=312-\int_{0}^{4}\left(x^{3}+3 x+2\right) d x=312-\left.\left(\frac{1}{4} x^{4}+\frac{3}{2} x^{2}+2 x\right)\right|_{0} ^{4}$ $=312-(64+24+8)=216$.
22. Setting $b=0$ creates a cubic function with positive leading coefficient, so there is no maximum value.
23. The $\sqrt{4-\frac{(x-10)^{2}}{4}}$ portion of the integral describes the top half of an ellipse centered at $(10,0)$ with major and minor radius of 4 and 2 , respectively. The area of the semi-ellipse is $\frac{\pi a b}{2}=\frac{\pi(4)(2)}{2}=4 \pi$. The integral can be interpreted as the volume obtained when the semi-ellipse is revolved about the line $x=3$. By the Theorem of Pappus, the volume is $2 \pi R A=2 \pi(10-3)(4 \pi)=56 \pi^{2}$.
$2 \pi \int_{6}^{14}(x-3)\left(4-\frac{(x-10)^{2}}{4}\right)^{1 / 2} d x=\pi \int_{6}^{14}(x-3) \sqrt{16-(x-10)^{2}} d x$. Making the
substitutions $u=x-10$ and $d u=d x$, the integral becomes $\pi \int_{-4}^{4}(u+7) \sqrt{16-u^{2}} d u$, which can be split up as $\pi\left(\int_{-4}^{4} u \sqrt{16-u^{2}} d u+\int_{-4}^{4} 7 \sqrt{16-u^{2}} d u\right)$. Because the integrand for the first integral is odd, the first integral is equal to 0 . Interpreting the second integral in terms of area, the second integral is 7 times the area under the semicircle centered at the origin with radius 4 . Therefore, the integral is equal to
$\pi\left(0+7\left(\frac{1}{2}\right)(\pi)(4)^{2}\right)=56 \pi^{2}$.
24. The frustum can be modeled by revolving the region bounded by the graphs of $y=\frac{1}{4} x+5$ and $y=0$ on the interval $0 \leq x \leq 12$ about the x-axis. At a general water level h, the volume is $V=\pi \int_{0}^{h}\left(\frac{1}{4} x+5\right)^{2} d x$. Differentiating with respect to time we get $\frac{d V}{d t}=\pi\left(\frac{1}{4} h+5\right)^{2} \frac{d h}{d t}$. Plugging in the given information yields the equation $\pi=\pi\left(\frac{1}{4}(6)+5\right)^{2} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{4}{169}$. Therefore, $\sqrt{m}+\sqrt{n}=\sqrt{4}+\sqrt{169}=2+13=15$.
25. Let R be the right triangle with vertices at $(0,0),(a, 0)$, and $(0, b)$. The first integral can be interpreted as the volume obtained when R is revolved about the x-axis. The second integral can be interpreted as the volume obtained when R is revolved about the y-axis. Both solids of revolution product cones, where a and b play the part of radius or height, depending on the axis of rotation. In this case, we have $\frac{1}{3} \pi b^{2} a=800 \pi$ and $\frac{1}{3} \pi a^{2} b=1920 \pi$. Solving simultaneously gives $a=24$ and $b=10$, so $a^{2}+b^{2}=576+100=676$.
26. Since $y=x^{3}-x, y^{\prime}=3 x^{2}-1$, and therefore $y^{\prime}(0)=-1$. Since we need the slope of the line to be negative and intersect the graph in three points, we must have $-1<m<0$. The graphs of $y=x^{3}-x$ and $y=m x$ intersect in the fourth quadrant when $x=0$ or $x=\sqrt{m+1}$. The area enclosed in the fourth quadrant is
$\int_{0}^{1}\left(0-\left(x^{3}-x\right)\right) d x=\left.\left(\frac{1}{2} x^{2}-\frac{1}{4} x^{4}\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$, so the area enclosed only above or below the line is $\frac{1}{8}$. Therefore, $\frac{1}{8}=\int_{0}^{\sqrt{m+1}}\left(m x-\left(x^{3}-x\right)\right) d x=\left.\left(\frac{(m+1) x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{\sqrt{m+1}}$

$$
=\frac{(m+1)^{2}}{2}-\frac{(m+1)^{2}}{4}=\frac{(m+1)^{2}}{4} \Rightarrow(m+1)^{2}=\frac{1}{2} \Rightarrow m+1=\frac{\sqrt{2}}{2} \Rightarrow m=-1+\frac{\sqrt{2}}{2}=\frac{\sqrt{2}-2}{2} .
$$

27. Let $P\left(a, a^{2}\right)$ be the vertex of the triangle in the first quadrant. The vertex in the second quadrant must be $\left(-a, a^{2}\right)$ in order to have an equilateral triangle, so the side length of the triangle is $2 a$, and the third vertex is the y-intercept of either line. Considering the line with positive slope, the slope of this line must be $\tan \left(\frac{\pi}{3}\right)=\sqrt{3}$, but the slope must also be $2 a$ because it is a tangent. Therefore, $2 a=\sqrt{3}$, and the area enclosed by the triangle is $\frac{(\sqrt{3})^{2} \sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}$.
28. By the washer method, the volume is $V=\pi \int_{1}^{\infty}\left(\left(\frac{1}{g(x)}\right)^{2}-\frac{1}{x^{2}}\right) d x$, and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ $=\left.\lim _{t \rightarrow \infty}\left(-\frac{1}{x}\right)\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(1-\frac{1}{t}\right)=1$. Graphing $y=(g(x))^{-1}$, we see that $\int_{1}^{\infty}\left(\frac{1}{g(x)}\right)^{2} d x$ $=\lim _{t \rightarrow \infty} \int_{1}^{t}\left(\frac{1}{g(x)}\right)^{2} d x=\lim _{t \rightarrow \infty} \sum_{n=1}^{t} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, so the volume is $\pi\left(\frac{\pi^{2}}{6}-1\right)=\frac{\pi^{3}}{6}-\pi$.
29. Referencing what was done in problem 11, the parabola could be the one with vertex $(1,1)$ and x-intercepts $(\pm 1,0) \Rightarrow y=1-x^{2}$. Therefore the area of the rectangle is $A=2 x y=2 x\left(1-x^{2}\right)=2 x-2 x^{3} \Rightarrow A^{\prime}=2-6 x^{2}$. A sign chart shows that, in context, the maximum occurs when $x=\frac{\sqrt{3}}{3}$, so the area is $A=2\left(\frac{\sqrt{3}}{3}\right)\left(1-\frac{1}{3}\right)=\frac{4 \sqrt{3}}{9}$.
30. In order for the graphs to not intersect, we must have imaginary values for their intersection. Setting the two equal, $x^{2}+(2 b-2 a) x+(1-2 a b)=0$, so the discriminant must satisfy $(2 b-2 a)^{2}-4(1)(1-2 a b)<0 \Rightarrow 4 a^{2}+4 b^{2}-4<0 \Rightarrow$
$a^{2}+b^{2}<1$. Since a and b were nonnegative, this area is $\frac{1}{4} \pi(1)^{2}=\frac{\pi}{4}$. Since $b \leq 4-a^{2}$, and again that a and b were nonnegative, this area is selected out of a total area of $\int_{0}^{2}\left(4-a^{2}\right) d a=\left.\left(4 a-\frac{1}{3} a^{3}\right)\right|_{0} ^{2}=8-\frac{8}{3}=\frac{16}{3}$. Therefore, the probability is $\frac{\pi / 4}{16 / 3}=\frac{3 \pi}{64}$.
