Answers:

- 1. C
- 2. C
- 3. D
- 4. C
- 5. D
- 6. A
- 7. C 8. B
- 9. D
- 10. E
- 11. D
- 12. B
- 13. C
- 14. A
- 15. B
- 16. A
- 17. D
- 18. A
- 19. C
- 20. A
- 21. B
- 22. C
- 23. D
- 24. D
- 25. D
- 26. B
- 27. B
- 28. A
- 29. C
- 30. C

Solutions:

1. Any angle coterminal with $-\frac{\pi}{3}$ and an *r*-value of -4 would be equivalent, so III is equivalent. An angle π away from one of these angles with an *r*-value of 4 would also work, so II is equivalent. These are the only ways to get an equivalent point, so I, IV, and V are not equivalent to the original point.

2.
$$r = \sqrt{(-2)^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$
, so $\cos\theta = \frac{-2}{2\sqrt{2}} = -\frac{1}{\sqrt{2}}$ and $\sin\theta = \frac{-2}{2\sqrt{2}}$

 $-\frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{5\pi}{4}$. Therefore, $(2\sqrt{2}, 5\pi/4)$ or any other coterminal angle is one way to write the point, making C an acceptable way to write the point (and making D an unacceptable way to write the point). By the discussion in the last problem, $(-2\sqrt{2}, \pi/4)$ or any other coterminal angle is another way to write the point, so A and B are unacceptable ways to write the point.

3.
$$((2cis47^{\circ})(3cis18^{\circ}))^{3} = (6cis65^{\circ})^{3} = 6^{3}cis(3\cdot65^{\circ}) = 216cis195^{\circ}$$
, so the angle argument is 195°.

4.
$$0 = x^{4} + 2x^{2}y^{2} + y^{4} - 4x^{2} + 4y^{2} = (x^{2} + y^{2})^{2} - 4x^{2} + 4y^{2} = r^{4} - 4r^{2}\cos^{2}\theta + 4r^{2}\sin^{2}\theta$$
$$\Rightarrow r^{4} = 4r^{2}(\cos^{2}\theta - \sin^{2}\theta) = 4r^{2}\cos^{2}\theta \Rightarrow r^{2} = 4\cos^{2}\theta, \text{ which is a lemniscate}$$

5. $z = \frac{a}{2} + be^{i\theta} + \frac{a}{2}e^{2i\theta}$ is the form in the complex plane for $r = b + a\cos\theta$, so a = 2 and b = 3, so the base area is $(3^2 + 0.5 \cdot 2^2)\pi = 11\pi$, so $\frac{11\pi}{\pi/2} = 22$ snails could cover the floor of the cage.

6.
$$r = \frac{4}{2 + \cos\theta} = \frac{2}{1 + \frac{1}{2}\cos\theta}$$
, so the eccentricity of the conic is $\frac{1}{2}$, making it an ellipse

- 7. Written in this form, the numerator, 2, is half the length of the latus rectum, meaning the latus rectum length is 4.
- 8. See the work for question 6—the eccentricity is $\frac{1}{2}$.

- $r = \theta$ is also known as the Spiral of Archimedes. 9.
- Using the Law of Cosines, $c^2 = 4^2 + \sqrt{2}^2 2 \cdot 4 \cdot \sqrt{2} \cos\left(\frac{9\pi}{4} \frac{5\pi}{3}\right) = 16 + 2 8\sqrt{2} \cos\frac{7\pi}{12}$ 10. $18 - 8\sqrt{2} \cdot \frac{\sqrt{6} - \sqrt{2}}{4} = 18 - 4\sqrt{3} + 4 = 22 - 4\sqrt{3} \Longrightarrow c = \sqrt{22 - 4\sqrt{3}}$, which is not equivalent to any of the choices.
- $r = (\cos 4\theta)(\sin 4\theta) = \frac{1}{2}(2\cos 4\theta \sin 4\theta) = \frac{1}{2}\sin 8\theta$, which has $2 \cdot 8 = 16$ petals since 8 11. is even

12.
$$\vec{u_c} = \left\langle -3\cos\frac{\pi}{3}, -3\sin\frac{\pi}{3} \right\rangle = \left\langle -\frac{3}{2}, -\frac{3\sqrt{3}}{2} \right\rangle$$
 and $\vec{v_c} = \left\langle -6\cos\frac{3\pi}{4}, -6\sin\frac{3\pi}{4} \right\rangle = \left\langle 3\sqrt{2}, -3\sqrt{2} \right\rangle$,
so $\vec{u_c} \cdot \vec{v_c} = \left(-\frac{3}{2}\right) \left(3\sqrt{2}\right) + \left(-\frac{3\sqrt{3}}{2}\right) \left(-3\sqrt{2}\right) = -\frac{9\sqrt{2}}{2} + \frac{9\sqrt{6}}{2} = \frac{9\left(\sqrt{6} - \sqrt{2}\right)}{2}$

13. The points are in order of being connected, and their rectangular coordinates are $\left(\sqrt{3},1\right)$, $\left(-\frac{3}{2},\frac{3\sqrt{3}}{2}\right)$, $\left(-2\sqrt{2},-2\sqrt{2}\right)$, and $\left(\frac{5\sqrt{3}}{2},-\frac{5}{2}\right)$, respectively. Using the

Sho

Shoelace method, the enclosed area is
$$-5\sqrt{6}$$

 $-5\sqrt{3}/2$
 $-\frac{5}{3}/2$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{3}{2}-8\sqrt{6}-\frac{5\sqrt{3}}{2}$
 $-\frac{9}{2}-8\sqrt{2}+\frac{5\sqrt{3}}{2}$
 $+\frac{8\sqrt{6}+8\sqrt{2}+5\sqrt{3}+6}{2}$

 $\begin{array}{c|c} -\frac{3}{2} & \sqrt{3} & 1 \\ -\frac{3}{2} & -\frac{3}{2} & \frac{3}{3}\sqrt{3} \\ -\frac{3}{2} & \frac{3}{2} & \frac{9}{2} \\ 3\sqrt{2} & 3\sqrt{2} \end{array}$

The values of r go to 0 as θ approaches $\frac{3\pi}{2}$, so this is from underneath, meaning 14. the cust points upward.

15.
$$i^{-i} = \left(e^{i\left(\frac{\pi}{2}+2k\pi\right)}\right)^{-i} = e^{\frac{\pi}{2}+2k\pi}$$
, and the principal value of this is $e^{\frac{\pi}{2}+2\cdot0\pi} = e^{\frac{\pi}{2}}$

16. Since 4 > 2, the graph of $r = 2 + 4\cos\theta$ will have an inner loop.

17. These two circle overlap in a region whose enclosed area is $2\left(\frac{1}{4}\pi \cdot \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^3\right)$

$$=2\left(\frac{\pi}{16}-\frac{1}{8}\right)=\frac{\pi-2}{8}.$$
 The total enclosed area is $2\left(\pi\left(\frac{1}{2}\right)^2\right)-\frac{\pi-2}{8}=\frac{3\pi+2}{8}$, so the probability is $\frac{\frac{\pi-2}{8}}{\frac{3\pi+2}{8}}=\frac{\pi-2}{3\pi+2}.$

- 18. Let $\theta = \tan^{-1}\left(-\frac{7}{24}\right) + \cos^{-1}\left(\frac{4}{5}\right)$. The rectangular coordinates are $(25\cos\theta, 25\sin\theta)$, which is $\left(25\left(\frac{24}{25}\cdot\frac{4}{5}-\left(-\frac{7}{25}\right)\cdot\frac{3}{5}\right), 25\left(\left(-\frac{7}{25}\right)\cdot\frac{4}{5}+\frac{24}{25}\cdot\frac{3}{5}\right)\right) = \left(\frac{117}{5}, \frac{44}{5}\right)$.
- 19. Any curve of the form $\theta = k$ is a line, so A is a line, and D is $\tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4} + n\pi$, which all yield the same line, so D is a line. For B, $r = 3\sec\theta = \frac{3}{\cos\theta} \Rightarrow x = r\cos\theta = 3$, so B is a line. C is the circle centered at the origin with radius 3, so it is not a line.

20.
$$\left(\frac{3\pi}{4} - \frac{4\pi}{5} + \frac{5\pi}{6}\right) = 135^{\circ} - 144^{\circ} + 150^{\circ} = 141^{\circ}$$

21.
$$\frac{(3cis72^{\circ})^{2}}{(2cis18^{\circ})^{3}} = \frac{9cis144^{\circ}}{8cis54^{\circ}} = \frac{9}{8}cis90^{\circ} = \frac{9}{8}i$$

22. $2011^{\circ} - 9.360^{\circ} = -1229^{\circ}$, so that angle is coterminal with the original angle. The answer choices in A, B, and D differ from the original angle by 12,066°, 1980°, and 1260°, none of which is divisible by 360°.

23.
$$(\operatorname{cis} x)^2 (\operatorname{cis} y)^3 (\operatorname{cis} z^4) = (\operatorname{cis} 2x) (\operatorname{cis} 3y) (\operatorname{cis} z^4) = \operatorname{cis} (2x + 3y + z^4)$$

24. For A, $x^2 + y^2 = 81\cos^2 t + 81\sin^2 t = 81 \Rightarrow r = \sqrt{x^2 + y^2} = 9$; likewise for B, so they are both equivalent. For C, $x^2 + y^2 = (9\sin 2t)^2 + (9\cos 2t)^2 = 81\sin^2 2t + 81\cos^2 2t = 81$,

so it is equivalent also. For D,
$$x^2 + y^2 = \left(9\sqrt{\frac{1-\cos t}{2}}\right)^2 + \left(9\sqrt{\frac{1+\cos t}{2}}\right)^2$$

 $= 81 \left(\frac{1 - \cos t}{2} \right) + 81 \left(\frac{1 + \cos t}{2} \right) = 81$, except that since both coordinates are defined by square roots, this is only the first quadrant portion of the circle, not the entire circle.

- 25. Mulitplying both sides by r and substituting makes the equation $x^2 + y^2 = 3y 4x$ $\Rightarrow x^2 + 4x + 4 + y^2 - 3y + \frac{9}{4} = 4 + \frac{9}{4} \Rightarrow (x+2)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{25}{4}$, so the center is at $\left(-2, \frac{3}{2}\right)$.
- 26. By the last problem, the radius length is $\frac{5}{2} = 2.5$.
- 27. Cylindrical coordinates are just polar coordinates with a *z*-coordinate, and they are in the form (r, θ, z) , so for this problem, $r = \sqrt{(-2)^2 + 2^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$ and $\cos \theta = \frac{-2}{2\sqrt{2}} = -\frac{1}{\sqrt{2}}$ and $\sin \theta = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{3\pi}{4}$. Therefore, the cylindrical coordinates are $\left(2\sqrt{2}, \frac{3\pi}{4}, 5\right)$.

28. The rectangular coordinates are
$$\left(4\cos\frac{5\pi}{3}, 4\sin\frac{5\pi}{3}, 7\right) = \left(2, -2\sqrt{3}, 7\right)$$
.

- 29. Since Santa is at the 60° north latitude, his *z*-coordinate is $4\sin 60^\circ = 2\sqrt{3}$ and his position in the *xy*-plane is a distance of $4\cos 60^\circ = 2$ from the origin. Because his position is at $\frac{2\pi}{3}$ radians in the *xy*-plane, $(x, y) = \left(2\cos\frac{2\pi}{3}, 2\sin\frac{2\pi}{3}\right) = \left(-1, \sqrt{3}\right)$. Therefore, Santa's position's rectangular coordinates are $\left(-1, \sqrt{3}, 2\sqrt{3}\right)$.
- 30. The angle of inclination is measured down from the *z*-axis, so we have a right triangle whose hypotenuse is 4, and the side opposite the 15° angle is the radius of the latitude Santa will stay on; call this radius *p*. Therefore, $p = 4\sin 15^\circ = 4\sin \frac{30^\circ}{2}$

$$=4\sqrt{\frac{1-\cos 30^{\circ}}{2}}=2\sqrt{2-\sqrt{3}}$$
, and the circumference is $2\pi p=4\pi\sqrt{2-\sqrt{3}}$.