For all questions, answer choice "E) NOTA" means none of the above answers is correct.

1. What is the standard form expression of the differential equation $e^x y' - x = y'$?

A)
$$y' = -\frac{x}{e^x - 1}$$
 B) $y' = \frac{x}{e^x - 1}$ C) $y' = -\frac{e^x}{x - 1}$ D) $y' = \frac{e^x}{x - 1}$ E) NOTA

2. What is the solution to the initial value problem z'-xz=-x, z(0)=4?

A)
$$z = e^{x/2} + 3$$
 B) $z = 2e^{x^2/2} + 2$ C) $z = 5e^{x^2/2} - 1$ D) $z = 3e^{x^2/2} + 1$ E) NOTA

3. What are the orthogonal trajectories to the family of curves with equations $x^2 + y^2 = c^2$?

A)
$$y = kx$$
 B) $y = kx^2$ C) $y = kx^3$ D) $y = kx^4$ E) NOTA

4. Which of the following is an integrating factor that would yield an exact solution for the equation $2xydx + y^2dy = 0$?

A)
$$y$$
 B) $\frac{1}{y}$ C) $\frac{1}{y^2}$ D) $\frac{1}{y^3}$ E) NOTA

5. Which of the following is the solution set of values of c that makes the set $\{1-cx,1+x,2-6x\}$ linearly dependent?

A)
$$c < 1$$
 B) $c > 1$ C) $-\infty < c < \infty$ D) $c = 3$ E) NOTA

6. A tank initially holds 100 gallons of a brine solution contains 20 pounds of salt. At time t=0, fresh water starts being poured into the tank at a rate of 5 gallons per minute, while the well-stirred, thoroughly-mixed mixture leaves the tank at the same rate. Find the amount of salt in the tank as a function of time t.

A)
$$Q = 20e^{-t/20}$$
 B) $Q = 20e^{-t/30}$ C) $Q = 20e^{-t/40}$ D) $Q = 20e^{-t/50}$ E) NOTA

7. Given that y'-2y=2x and y(0)=1, use Euler's Method with a step size of h=0.1 to approximate the value of y(0.2).

8. A particle has acceleration function $a(t) = (t-1)^2$. If the particle is stationary at t=1and s(1)=0, where s is the position function, what is the particle's position at t=3?

- A) $\frac{4}{3}$
- B) 2
- c) %
- D) 10/3
- E) NOTA

9. A ball is propelled straight up from the ground with an initial velocity of 256 feet per second in a vacuum with no air resistance. How high will the ball go, in feet, given that acceleration due to gravity is -32 feet per second?

- A) 128
- B) 256
- C)512
- D) 1024
- E) NOTA

10. What constant interest rate is required if an initial deposit placed into an account that accrues interest compounded continuously is to double its value in six years?

- A) $(20\ln 2)\%$ B) $\left(\frac{50\ln 2}{3}\right)\%$ C) $\left(\frac{100\ln 2}{7}\right)\%$ D) $\left(\frac{25\ln 2}{2}\right)\%$
- E) NOTA

11. What is the general solution to the differential equation y''-y'-2y=0?

- A) $y = c_1 e^x + c_2 e^{-x}$
- B) $y = c_1 e^{-x} + c_2 e^{-2x}$
- C) $v = c_1 e^x + c_2 e^{2x}$

- D) $y = c_1 e^{-x} + c_2 e^{2x}$
- E) NOTA

12. Which of the following is not an ordinary differential equation?

- A) $\sqrt{\frac{dy}{dy}} y = x$ B) $\frac{d^2y}{dy^2} + y = y^2$ C) $\frac{dx}{dt} + \frac{dt}{dy} = 5ty$ D) $\frac{dy}{dx} x^2 = xy$

13. Find the solution to the differential equation $y' - \frac{3}{3}y = x^4y^{\frac{1}{3}}$.

- A) $y = (cx^2 + 2x^5)^{\frac{3}{2}}$ B) $y = (cx^2 + \frac{2}{3}x^5)^{\frac{3}{2}}$ C) $y = (cx^2 + \frac{2}{5}x^5)^{\frac{3}{2}}$ D) $y = (cx^2 + \frac{2}{7}x^5)^{\frac{3}{2}}$

E) NOTA

14. What are the graphs of the family of curves that are solutions to the equation ydx + xdy = 0?

- A) parabolas
- B) hyperbolas
- C) circles
- D) ellipses
- E) NOTA

15. Find the general solution to the differential equation $100\frac{d^2N}{dt^2} - 20\frac{dN}{dt} + N = 0$.

- A) $N = c_1 e^{t/10} + c_2 t e^{t/10}$ B) $N = c_1 e^{t/20} + c_2 t e^{t/20}$ C) $N = c_1 e^{t/30} + c_2 t e^{t/30}$ D) $N = c_1 e^{t/40} + c_2 t e^{t/40}$ E) NOTA
- 16. What is the order of the differential equation $ty'' + t^2y' (\sin t)\sqrt{y} = t^2 t + 1$?
- A) 1 B) 2 C) 3 D) 4 E) NOTA
- 17. Given that $\{2,6,8\}$ is a complete set of roots for the characteristic equation of an nth-order near homogeneous differential equation in y(x) with real coefficients, determine the associated differential equation.
- A) y'''-14y''+45y'-86y=0 B) y'''-6y''+34y'-72y=0 C) y'''-18y''+58y'-46y=0 D) y'''-16y''+76y'-96y=0 E) NOTA
- 18. Find the general solution to the differential equation $y' = \frac{2y^4 + x^4}{xy^3}$.
- A) $y^4 = x^8 kx^4$ B) $y^2 = x^8 x^4$ C) $y^4 = kx^8 x^2$ D) $y^4 = kx^8 x^4$ E) NOTA
- 19. $y = ce^{-\int p(x)dx} + e^{-\int p(x)dx} \int e^{\int p(x)dx} q(x) dx$ is the general solution to which of the following differential equations?
- A) y'+y=q(x)B) y'+p(x)y=q(x)C) $y'+p(x)y=q(x)y^2$ D) $y'+p(x)y^2=q(x)y$ E) NOTA
- 20. Find the general solution to the equation $(x + \sin y)dx + (x\cos y 2y)dy = 0$.
- A) $x^2 + x \sin y y = c$ B) $x^2 + x \sin y - y^2 = c$ C) $\frac{x^2}{2} + x \sin y - y^2 = c$ D) $\frac{x^2}{2} + x \sin y - \frac{y^2}{2} = c$ E) NOTA

21. The population of a certain country is known to increase at any given time at a rate proportional to the number of people living in the country at that time. If after two years the population has doubled, what is the relative growth rate?

A)
$$\frac{\ln 2}{4}$$

B)
$$\frac{\ln 2}{2}$$

C) ln2

D) 2ln2

E) NOTA

22. Find the solution to the differential equation y'''-6y''+11y'-6y=0.

A)
$$y = c_1 e^x + c_2 e^{2x} + c_2 e^{3x}$$

A)
$$y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$
 B) $y = c_1 e^x + c_2 x e^{2x} + c_3 e^{3x}$ C) $y = c_1 e^x + c_2 x e^{2x} + c_3 x e^{3x}$

C)
$$v = c_1 e^x + c_2 x e^{2x} + c_2 x e^{3x}$$

D)
$$y = c_1 e^x + c_2 x e^{2x} + c_3 e^{3x} + x$$
 E) NOTA

23. Find the solution to the differential equation $y'-3x^2=x$.

A)
$$y = x^3 + x^2 + c$$

B)
$$y = \frac{x^3}{2} + x^2 + a$$

C)
$$y = x^3 + \frac{x^2}{2} + \frac{x^2}{2}$$

A)
$$y = x^3 + x^2 + c$$
 B) $y = \frac{x^3}{2} + x^2 + c$ C) $y = x^3 + \frac{x^2}{2} + c$ D) $y = \frac{x^3}{2} + \frac{x^2}{2} + c$

24. Which of the following differential equations is linear?

A)
$$y''' - yy'' + y = 5$$

B)
$$(y'')^2 - 5y = 0$$

C)
$$y'' - xy' + y^3 = 0$$

A)
$$y''' - yy'' + y = 5$$
 B) $(y'')^2 - 5y = 0$ C) $y'' - xy' + y^3 = 0$ D) $y^3 y^{(4)} - 4y''' + y = 3$

E) NOTA

25. A metal bar at a temperature of 100°F is placed in a room with a constant temperature of 0°F. If after 20 minutes the temperature of the bar is 50°F, find the time, in minutes, it will take the bar to reach a temperature of 25°F from its initial 100°F.

- B) 40
- C) 60
- D) 80

E) NOTA

26. Find the general solution to the differential equation $y'' - y = x^2$, given that one solution to the equation is $y = -x^2 - 2$ and if two solutions to the differential equation y'' - y = 0are e^x and e^{-x} .

A)
$$y = -x^3 - 2 + c_1 e^x + c_2 e^{-x}$$

A)
$$y = -x^3 - 2 + c_1 e^x + c_2 e^{-x}$$
 B) $y = -x^2 - 2 + c_1 e^x + c_2 e^{-2x}$ C) $y = -x^2 - 2 + c_1 e^{2x} + c_2 e^{-x}$

C)
$$y = -x^2 - 2 + c_1 e^{2x} + c_2 e^{-x}$$

D)
$$y = -x - 2 + c_1 e^x + c_2 e^{-x}$$
 E) NOTA

27. Find the product of values c_1 and c_2 such that $y(x) = c_1 e^x + c_2 e^{-x} + 4 \sin x$ satisfies y(0)=1 and y'(0)=-1.

- A) -8
- B) -6
- C) -4 D) -2
- E) NOTA

28. The half-life of a new radioactive substance is 1 day. If you begin with 16 grams of the substance, how much of the original substance, in grams, will remain after four days?

- A) 2
- B) 1
- C) 0.5
- D) 0.25
- E) NOTA

29. Which of the following differential equations is homogeneous?

- A) $y' = \frac{x^4}{x^2 + v^2}$ B) $y' = \frac{x^4}{x^4 + v^4}$ C) $y' = \frac{x^4}{xv^4}$ D) $y' = \frac{x^4}{v^3}$

- E) NOTA

30. Find the solution to the differential equation $y' = \frac{x+1}{v^4+1}$.

- A) $\frac{y^3}{3} + y \frac{x^2}{2} x = c$ B) $\frac{y^5}{5} + y \frac{x^3}{3} x = c$ C) $\frac{y^5}{5} + y^2 \frac{x^2}{2} x = c$
- D) $\frac{y^5}{5} + y \frac{x^2}{2} x = c$
- E) NOTA