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Solutions: 

 

1. There are a total of 
 8 8 3

20
2


  diagonals in the octagon, and the only ones that 

pass through the center would be the ones whose vertices are diametrically 

opposite.  There are 4 such pairs, so there are a total of 20 4 16   diagonals that do 

not pass through the center of the circle. 

 

2. By the Fundamental Counting Principle, there are 8 6 10 480    such ways. 

 

3. Similarly, there are 
8

6 10 28 6 10 1680
2

 
      

 
 such ways since wearing the same 

two shirts, regardless of which one is on the outside, is considered the same outfit. 

 

4. Let ,  ,  and R B K  be the sets of birds with red, blue, or black feathers, respectively.  

Then 60 60 75R B K R B K R B R K B K R B K                  

 15 25 20 5 140      total birds. 

 

5.  
4 2 8 4

6 5 30 15
    

 

6. 3 312 1728 and 13 2197  , so 313  is the first to be counted.  339 59319 and  

 340 64000 , so 339  is the last to be counted.  Therefore, there are a total of 

39 13 1 27    perfect cubes that fit the criterion. 

 

7. Since every factor of 80 consists of four 2s and a 5, we must find how many of each 

prime are in the prime factorization of 2011!.  By Legendre’s theorem, the number  

 of 5s is 
2011 2011 2011 2011

402 80 16 3 501
5 25 125 625

       
              

       
, and the 

number of 2s is 
2011 2011 2011 2011 2011 2011 2011

2 4 8 16 32 64 128

             
                  

             
 

 
2011 2011 2011

1005 502 251 125 62 31 15 7 3 1 2002
256 512 1024

     
                  
     

.  

If we use 500 of the 5s and 2000 of the 2s, this would be 500 80s, with one 5 and 

two 2s left over.  Therefore, the largest number of 80s in the factorization is 500. 

 

8. There are a total of 
20 3

30
2


  edges since each edge is used for two faces.  Now, 

since 5 edges radiate from each vertex, and each edge radiates from two vertices,  
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there are a total of 
30 2

12
5


  vertices. 

 

9. There are 
5

10
2

 
 

 
 subsets that have 1 as their smallest element, 

4
6

2

 
 

 
 subsets 

that have 2 as their smallest element, 
3

3
2

 
 

 
 subsets that have 3 as their smallest 

element, and 
2

1
2

 
 

 
 subset that has 4 as its smallest element.  Therefore, 

 
20

1

min 10 1 6 2 3 3 1 4 10 12 9 4 35k
k

A


             . 

 

10. 1) If the center square is to be shaded, our goal is to arrange two shaded squares on 

the outside of the center square.  This case is easier if we rotate any position so that 

the greatest possible number of squares on the top row are shaded.  If a corner 

square on the top row is shaded, there are 4 distinct ways to shade another square:  

 1 2 

  3 

  4 

 If the figure cannot be rotated such that a corner square is shaded on the top row, 

then only side squares are shaded.  Rotate one of them to the top row and count 2 

distinct arrangements: 

   

  1 

 2  

 2) Now, if the center square is not to be shaded, we will begin by rotating as many 

squares as possible to the top row to make the counting easier.  If both of the top 

two corners are shaded, then there are 4 ways to shade a third square: 

 1  

  2 

 4 3 

 If one top corner square is shaded, along with the opposite corner and no other 

corners, then there is only 1 arrangement because all others are indistinct.   

 

If only one corner square is shaded, then there are four arrangements.  We could 

break these into subsubcases if necessary (at least one shaded side square is 

adjacent to the shaded corner square vs. the corner square and two nonadjacent 

side squares are shaded): 
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Finally, if no corners are shaded, then three side squares are shaded.  All such 

arrangements are indistinct, so there is only 1 arrangement. 

  

Adding these cases together, we get a total of 4 2 4 1 4 1 16       distinct 

arrangements. 

 

11. We need only set the first and second digits to determine the four-digit number, so 

let  ,a b  be the ordered pair consisting of the first and second digits of the number.  

If 1a  , we have 3 possibilities for b  (1, 2, 3).  If 2a  , we have 3 possibilities for b  

(2, 3, 4).  If 3a  , we have 4 possibilities for b  (2, 3, 4, 5).  If 4a  , we have 3 

possibilities for b  (3, 4, 5).  If 5a  , we have 3 possibilities for b  (4, 5, 6).  If 6a  , 

we have 4 possibilities for b  (4, 5, 6, 7).  If 7a  , we have 3 possibilities for b  (5, 6, 

7).  If 8a  , we have 3 possibilities for b  (6, 7, 8).  If 9a  , we have 4 possibilities 

for b  (6, 7, 8, 9).  Altogether, there are 3 3 4 3 3 4 3 3 4 30          possibilities. 

 

12. There are 38 512  total possible rolls, and the only ways to roll a sum of 22 are 

with two 7s and an 8 or two 8s and a 6.  In each of these cases there are 
3

3
1

 
 

 
 

positions to place the single number, so there are a total of 6 ways to roll a sum of 

22, making the probability 6 3
512 256

 . 

 

13. The prime factorizations of 500 and 1200 are 3 2 2 1 45 2  and 5 3 2 , respectively.  

Therefore, any positive integral divisors of 500 that are also divisors of 1200 must 

come from 2 25 2  since that is the part of the factorization of 500 that is shared by 

1200.  Therefore, there are a total of    22 1 2 1 3 9     such divisors. 

 

14. Since 
25 25!

12 12!13!

 
 

 
, we can apply Legendre’s theorem in order to count the primes 

in the prime factorization by adding the number of times the prime appears in the 

numerator and subtracting the number of times the prime appears in the 

denominator.  For instance, the number of 2s in the numerator is 
25 25

2 4

   
   

   
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25 25

12 6 3 1 22
8 16

   
         
   

.  For the denominator, the number of 2s is 

12 12 12 13 13 13
6 3 1 6 3 1 20

2 4 8 2 4 8

           
                      

           
.  Therefore, there 

are 22 20 2   2s in the prime factorization.  Doing similar calculators for the other 

primes up through 19, there are 10 10 0   powers of 3, 6 4 2   powers of 5, 

3 2 1   power of 7, 2 2 0   powers of 11, 1 1 0   powers of 13, 1 0 1   power of 

17, and 1 0 1   power of 19, making a total of 5 primes that are divisors of 
25

12

 
 
 

 

(those numbers are 2, 5, 7, 17, and 19). 

 

15. Since the sum of all faces on both dice is  2 1 2 ... 20 420    , which is a multiple 

of 3, find the probability that the sum of the 38 showing faces is a multiple of 3 is the 

same as showing that the sum of the unseen faces is also 3.  In other words, we are 

merely looking for the probability that the sum of faces rolled is a multiple of 3.  

Considering all the possible sums that are multiple of 3, there are 2 ways each of 

rolling a sum of 3 or 39, 5 ways each of rolling a sum of 6 or 36, 8 ways each of 

rolling a sum of 9 or 33, 11 ways each of rolling a sum of 12 or 30, 14 ways each of 

rolling a 15 or a 27, 17 ways each of rolling a sum of 18 or 24, and 20 ways of rolling 

a sum of 21.  Therefore, the total number of ways of rolling a sum that is a multiple 

of 3 is  2 2 5 8 11 14 17 20 134       , and the total number of different rolls is 

220 400 , so the probability is 134 67
400 200

 . 

 

16. Noah must be included (1 way), and there are three ways to either include or not 

include Richard Dawkins and Jerry Falwell (everything except both on the raft).  For 

the other 5 friends, there are 2 ways each to include or not include them, so the total 

number of ways to have people escape on the raft is 51 3 2 96   . 

 

17. 
7 7 7 7

35 21 7 1 64
4 5 6 7

       
              

       
 

 

18. Let  
15 15 15 15 15

3 5 ... 2 1 ... 31
0 1 2 15

S n
n

         
                
         

.  Since 
15 15

15n n

   
   

   
, 

15 15 15 15
31 29 27 ...

0 1 2 15
S

       
           

       
 also.  Adding these two equations together 

yields  15 20 1915 15 15 15
2 32 32 32 ... 32 32 2 2 2

0 1 2 15
S S

       
               

       
. 
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19. To be a multiple of 9, the sum of the digits must be divisible by 9.  Additionally, since 

the sum of all the possible digits is 0 1 2 3 4 5 6 7 8 9 45          , the digits we 

leave out of the number must also sum to a multiple of 9.  Listing the digits in 

increasing order, there are 24 such combinations of numbers we could leave out: 10 

that contain 0 (0126, 0135, 0234, 0189, 0279, 0369, 0378, 0459, 0468, 0567) and 

14 that do not contain 0 (1269, 1278, 1359, 1368, 1458, 1467, 2349, 2358, 2367, 

2457, 3456, 3789, 4689, 5679).  Therefore, for the six-digit number, there are 10 

that don’t contain 0, each of which has 6! 720  different arrangements, and 14 that 

do contain 0, each of which has 5 5! 600   different arrangements.  Therefore, the 

total number of numbers that fit the criteria are 10 720 14 600 15600    . 

 

20. To find the greatest number of rectangles that could be formed, all of the lines must 

be parallel or perpendicular to one another.  Suppose n  lines are parallel in one 

direction.  Then 15 n  lines must be parallel in the other direction.  Therefore, the 

number of rectangles would be 
    15 14 115

2 2 2 2

n n n nn n     
   

  
 

 
        

2 2
15 1 14 49 8 49 7

2 2 2 2

n n n n n n      
    , which is largest when either 

7 or 8n n  .  Therefore, the largest number of rectangles would be 
8 7

2 2

  
  
  

 

 28 21 588   . 

 

21. All terms in the expansion have terms of the form a bx y .  The maximum possible 

value of b  assumes that ax  is the result of as few terms as possible multiplied by 2y  

terms.  The minimum possible value of b  assumes that ax  is the result of as many 

terms as possible multiplied by 1y  terms.  For 0 10a  , the minimum possible 

value of  is 10b a ; for 10 20a  , the minimum possible value of b  is 0 since all 

the terms multiplied could be x  terms.  In all cases, the maximum possible value of 

b  results from  -terms
2
a x 
 

 multiplied together, so the number of remaining 

terms is 10
2
a 
 

, resulting in a maximum value of b  of  2 10 20 2
2 2
a a     
   

, 

which equals 20 a  if a  is even and 19 a  if a  is odd.  The total number of terms is 

the sum of the maximal values of b  minus the number of positive integers less than 

the minimal values of b  for 0 20a  , which is  20 18 18 16 16 ... 2 2 0         

  9 8 7 ... 1 0 0 ... 0 200 45 155            . 

 

22. By the pigeonhole principle, there cannot be three circles of the same color.  

Therefore, the only possible cases are that 1) two circles are of one color, two circles 
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of another color, and the last circle of a third color; 2) two circles are of one color 

and the other three circles are all of three other different colors; and 3) all five 

circles are different colors. 

 

 In the first case, let circle 1 be the lone-colored circle.  Circle 1 has 5 color options 

while the others must alternate colors.  There are 5 4 3 60    possibilities for colors, 

and since any of the five circles could be the lone-colored circle, there are a total of 

5 60 300   colorings in the first case. 

  

 In the second case, the two circles with the same color must have exactly 1 circle in 

between them, and there are 5 ways to select this pair.  Additionally, there are 

5 4 3 2 120     ways of choosing the colors, so there are a total of 5 120 600   

colorings in the second case. 

 

 In the third case, there are simply 5! 120  different colorings. 

 

 In total, there are 300 600 120 1020    total colorings. 

 

23. Let 1 2

1 2 ... ke e e
kn p p p    , where 1 2 ... ke e e   .  Since n  has 4 positive divisors that are 

fifth powers, we have 1 21 1 ... 1 4
5 5 5

ke e e     
           

     
.  This product of positive 

integers equals 4, so no more than two of those integers is greater than 1.  This 

means that no more than two of the exponents ie  are at least 5, which gives us two 

possible models for n : either 1) 115 20 and 5ie e    for 1 i k  , or 2) 

2 15 10 and 5ie e e     for 2 i k  . 

 

 Next, since n  has 6 positive divisors that are perfect cubes, we have 

1 21 1 ... 1 6
3 3 3

ke e e     
           

     
.  Again, this product of positive integers is such that 

no more than two of those integers are greater than 1. According to our model, we 

have 1 21 1 6
3 3

e e   
      

   
, and this product is either 6 1 or 3 2  .  Updating the two 

models, we have either 1) 115 18 and 3ie e    for 1 i k  , or 2) 16 9e   and 

2 5e  . 

 

 Next, since n  has 12 perfect square divisors, we have 

1 21 1 ... 1 12
2 2 2

ke e e     
           

     
.  Attempting to fit this into the first model, since 
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1
115 18,  8 1 10

2

e
e

 
     

 
, but no integers in this range are divisors of 12, so this 

model isn’t possible.  Attempting to fit this into the second model, the only 

possibility is 1 21 4 and 1 3
2 2

e e   
      

   
.  Since we want the least possible number 

of positive divisors, 1 26 and 5e e  , and 0ie   for all other i .  Therefore, 6 5
1 2n p p  , 

which has a total of   6 1 5 1 42    positive divisors. 

 

24. There are 5 possible rolls that have a sum of 8, only one of which is doubles (double 

4s).  Therefore, the probability is 1
5

. 

 

25. It is easy to see that the equation of the plane is 101x y z   .  Since each of ,  ,x y  

and z  must be positive, define ' 1,  ' 1,  and ' 1x x y y z z      , then we are now 

looking for the number of ordered triples of nonnegative integers such that 

' ' ' 98x y z   .  There are 
98 3 1 100

3 1 2

    
   

   
 different ways to do this. 

 

26. Just as in the last problem, define 1,  1,  and 1x a y b z c      , which changes the 

equation to 2 31x y z   , and we are now looking for nonnegative integer 

solutions.  Now, allowing z  to be 0, 1, 2, …, 15 yields the equations 31,x y   

29,  ...,  1x y x y    .  The total number of solutions to these equations is 

32 30 28 2
... 32 30 28 ... 2 272

1 1 1 1

       
                

       
. 

  

27. There are a total of 
7!

210
2!2!3!

  to arrange the 7 beads in a row, but this is an 

overcounting since rotations will eliminate some arrangements.  There is no 

rotational symmetry possible among 7 beads with multiple colors because 2 and 3 

are not divisors of 7.  So there are only 
210

30
7

  possible bracelets.  Now some 

bracelets have symmetry when flipped.  These are the ones that can be oriented 

with left-right symmetry such as BRGRGRB.  A red bead must be in the middle.  The 

first three beads must be matched symmetrically with the last three beads.  There 

are 3! 6  ways to do this.  So, flipping these bracelets does not result in a different 

ordering.  However, each of the other 30 6 24   patterns can be flipped to match 

one of the other 23 remaining patterns.  This means that only 
24

12
2
  of the 

patterns are distinct.  The total number of distinct bracelets, then, is 6 12 18  . 
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28. There are 12 players, each of whom watches 35 bouts.  This means that a player 

watches a bout 12 35 420   times.  Since 10 players watch each bout, the number of 

bouts is 
420

42
10

 . 

 

29. There are a total of 
7

35
3

 
 

 
 ways of selecting the vertices.  Now, each angle of the 

triangle is equal to half the number of degrees of the arc it intercepts.  In the case of 

a heptagon, none of these arcs is equal to 180 , so none of the angles can be right.  If 

the arc is greater than 180 , then the triangle is contained within a semicircle and 

does not contain the center of the circle.  This means one of the angles is obtuse.  

One the other hand, every acute triangle formed by three of the vertices contains the 

center of the circle because any diameter drawn intersects two of the sides of the 

triangle. 

 

 At each vertex of the triangle formed by three vertices of the heptagon, we write a 

number equal to the number of vertices of the heptagon we must move clockwise 

until we encounter the next vertex of the triangle.  The total must be 7.  Since the 

triangle must be acute, none of these numbers can be greater than 3 (4 or more 

would imply an arc larger than 180 .  These numbers must be permutations of the 

triples    3,3,1  or 3,2,2 .  The  3,3,1  triangles are isosceles, and we can rotate one 

around the circle to form 7 possible acute triangles.  The same is true for the  3,2,2  

triangles, so there are a total of 7 7 14   acute triangles, making the probability 

14 2
35 5

 . 

 

30. The generating function for the roll of one of Nick’s dice is   2 3 4f x x x x x     

 5 6 7 8x x x x    , so the generating function for the sum is   2 2 3 4f x x x x x     

 
2

5 6 7 8x x x x    .  Let     and p x g x  be the generating functions for Bill’s dice.  

Since the sums are the same, we known that      2 3 4 5 6p x g x x x x x x x       

 
2

7 8x x  .  Since 11 is the largest number on one of the dice, assume without loss of 

generality that the degree of  p x  is 11.  Now we are looking for an alternative 

factorization of the given polynomial.  We have      2 3 4 5 6p x g x x x x x x x       

   
   

 

2 22 4 48
2 2

7 8 2 2 3 4 5 6 7 2 2

2

1 11
1

1 1

x xx
x x x x x x x x x x x x

x x

  
            

  
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     

 

       

 

2 2 2 2 2 2 24 2 2 4 2

2 2

2 2

1 1 1 1 1 1 1

1 1

x x x x x x x
x x

x x

      
 

 
 

      
2 2 22 4 21 1 1x x x x    .  

 

 Now consider what we know about the polynomial functions of the individual dice.  

There are 8 sides, so the sum of the coefficients must be 8; this means that  1p  

  1 8g  .  Also, each coefficient must be nonnegative since you can’t have a 

negative number of faces.  Finally, neither polynomial can have a constant because 

the numbers on the faces must be natural numbers, and a constant has a degree of 0, 

which is not natural.  This means that x  must be a factor of each of     and p x g x . 

 

 The sums of the coefficients of the individual unsquared factors are 1, 2, 2, and 2 (as 

ordered in the last factorization).  In order for    1 1 8p g  , the factors with sums 

of 2 must be split evenly among     and p x g x .  The sum of the degrees of the 

polynomials must be 16 and  p x  has degree 11, so  g x  has degree 5.  The only 

way to get a degree of 5 with a factor of x  and three factors with sum 2 is 

     
2 2 2 3 4 51 1 2 2 2g x x x x x x x x x        , which makes 

    
2

2 4 3 5 7 9 111 1 2 2p x x x x x x x x x x         .  Thus, one of Bill’s dice has 

faces 1, 2, 2, 3, 3, 4, 4, 5; while the other has faces 1, 3, 5, 5, 7, 7, 9, 11.  Therefore, the 

smaller sum is 1 2 2 3 3 4 4 5 24        . 

 


