1. A This is the graph of $y = |x|$ reflected about the line $y = x$.
2. D We see that $14^2 + 1 = 197 < 213 = 6^3 - 3$. None of the other points satisfy the inequality.
3. C Since the amplitude of $\sqrt{3} \sin(x) + \cos(x)$ is $\sqrt{\left(\sqrt{3}\right)^2 + 1^2} = 2$, we have that $A = 2$. Expand

 $2\cos(x - \phi) = 2\left[\sin(\phi)\sin(x) + \cos(\phi)\cos(x)\right]$, so we need $\sin(\phi) = \frac{\sqrt{3}}{2}$ and $\cos(\phi) = \frac{1}{2}$. Thus, $\phi = \frac{\pi}{3}$, so $A\phi = 2\frac{\pi}{3}$.
4. A Over $[0, \pi]$, this inequality is satisfied on the interval $\left[0, \frac{\pi}{4}\right]$. Thus, the desired probability
 is $\frac{\pi}{4} = \frac{1}{4}$.
5. D We have $\{\pi\} + \{-\pi\} = (\pi - 3) + (-\pi - (-4)) = 4 - 3 = 1$.
6. B Naturally, for positive x, the fractional part can be any number in $[0,1)$. However, for
 negative x, $[x] \leq x$, so the fractional part becomes negative (it can be any number in $(-1,0]$). Thus, the desired range is $(-1,1)$.
7. D We can write this as $2x + (x - \lfloor x \rfloor) = 3x - \lfloor x \rfloor = 2.1$. It is clear that x cannot be greater than
 or equal to 2 (since for positive x, $\{x\}$ is non-negative). Thus, $\lfloor x \rfloor = 0$ or $\lfloor x \rfloor = 1$. Solving these
 separately gives $x = 2.1/5 = 0.4$ and $x = 3.1/3 = 1.0$. The sum is $21/15 + 31/30 = 52/30 = 26/15$.
8. D We have $-5a + 2a^2 + 18 = 16$, so $2a^2 - 5a + 2 = 0$. We factor this as

 $2a^2 - 4a - a + 2 = 2(a - 2) - (a - 2) = (2a - 1)(a - 2) = 0$, so the solutions are $\left\{\frac{1}{2}, 2\right\}$.
9. B The period is $\frac{2\pi}{\omega}$ so $\frac{P}{2\pi} = \frac{1}{\omega}$. The time lag is then $t_0 = \frac{1}{\pi} \cdot (-2) = -\frac{2}{\pi}$.
10. C Note that $\frac{x^3 - y^3}{x - y} = x^2 + xy + y^2 = 14$. We have $(x - y)^2 = x^2 - 2xy + y^2 = -49$. Subtracting
 the two equations gives $3xy = 63$, so $xy = 21$. Thus, $a + b = 21 + 0 = 21$.
11. B We need to find the coefficients on the x^{2012} and x^{2011} terms. We see that

 $(x + 2)^{2012} = x^{2012} + 2012 \cdot 2x^{2011} + \ldots$ and $(x - 1)^{2012} = x^{2012} - 2012x^{2011} + \ldots$, so

 $(x + 2)^{2012} + (x - 1)^{2012} = 2x^{2012} + 2012x^{2011} + \ldots$. The sum of the roots is $-2012/2 = -1006$.
12. B Writing these in rectangular form gives $r\cos(\theta) = 1 \Rightarrow x = 1$ and

 $r\cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(r\sin(\theta) + r\cos(\theta)) = 1 \Rightarrow x + y = \sqrt{2}$. These are non-parallel lines, so they
 intersect exactly once.
13. A If you didn’t already know this, you could just substitute in some numbers.
14. E This occurs where $\sin(x) = 0$ or $\cos(x) = 1$. Thus, $x = n\pi$ for all integers n, so there are
 infinitely many solutions.
15. D We have that \(\frac{\sin(x)}{1-\sin(x)} = \frac{3}{2} \), so \(\sin(x) = \frac{3}{2} - \frac{3}{2} \sin(x) \Rightarrow \frac{5}{2} \sin(x) = \frac{3}{2} \Rightarrow \sin(x) = \frac{3}{5} \).

By the domain of the logarithm, we know that \(\cos(x) > 0 \) so \(\cos(x) = \frac{4}{5} \). Then,

\[
\log_a\left(\frac{\sin(x)}{\cos^2(x)} \right) = \log_a\left(\frac{\frac{3}{5}}{\frac{16}{25}} \right) = \log_a\left(\frac{15}{16} \right) = 2, \text{ so } a = \sqrt[15]{16} = \sqrt[15]{4}.
\]

16. B The determinant is

\[
\begin{vmatrix}
1 & 1 & 0 & 3 & 1 & 0 & 3 & 1 & 1 \\
-5 & -1 & 8 & -1 & -1 & 8 & -4 & -1 & -5 \\
8 & 2 & -12 & 3 & 2 & -12 & 3 & 8 & 2 \\
\end{vmatrix}
= 1 \cdot 0 + 2 \cdot 0 - 4 \cdot 0 = 0. \text{ However, this is actually unnecessary – just do question 17, and when you see that row operations eliminate a row of the matrix, you know that the determinant is 0.}
\]

17. D Since the answer to the previous question is 0, the system is linearly dependent. Hence, \(w \) cannot be uniquely determined without values of at least some of the other variables.

18. A \(a \) is just the minimum value of \(-x^2 + x - 1\) which occurs at the vertex of \(x = \frac{1}{2(-1)} = \frac{1}{2} \).

Thus, \(a = -\frac{1}{4} + \frac{1}{2} - 1 = -\frac{3}{4} \).

19. A Using the sum of cubes factorization, write

\[
\sin^6(x) + \cos^6(x) = \left[\sin^2(x) + \cos^2(x) \right] \left[\sin^4(x) + \cos^4(x) - \sin^2(x) \cos^2(x) \right].
\]

Note then that

\[
\left[\sin^2(x) + \cos^2(x) \right]^2 = 1 = \sin^4(x) + \cos^4(x) + 2 \sin^2(x) \cos^2(x).
\]

We can then write

\[
\sin^6(x) + \cos^6(x) = 1 - 3 \sin^2(x) \cos^2(x) = 1 - 3 \left(\frac{\sin(2x)}{2} \right)^2 = 1 - \frac{3a}{4}.
\]

20. D If we denote the 5 roots of \(f(2x+1) \) as \(r_i \) then the roots of \(f(x) \) are \(2r_i + 1 \). Thus, the sum of the roots of \(f(x) \) is \(\sum_{k=1}^{5} (2r_i + 1) = 5 + 2 \sum_{k=1}^{5} r_i = 5 + 2 \cdot 3 = 11 \).

21. A We can write \(\sin(\theta) \tan(\theta) = \frac{\sin^2(\theta)}{\cos(\theta)} = \frac{1 - \cos^2(\theta)}{\cos(\theta)} \). Since the numerator is non-negative, we have a positive denominator, so \(\cos(\theta) > 0 \). Then, for \(\frac{1 - \cos^2(\theta)}{\cos(\theta)} < 1 \) we need \(\cos(\theta) > 1 - \cos^2(\theta) \) so \(\cos^2(\theta) + \cos(\theta) - 1 > 0 \). The roots of \(\cos^2(\theta) + \cos(\theta) - 1 = 0 \) are \(\cos(\theta) = \frac{-1 \pm \sqrt{5}}{2} \), so this is satisfied where \(\cos(\theta) < \frac{-1 - \sqrt{5}}{2} \) and \(\cos(\theta) > \frac{-1 + \sqrt{5}}{2} \). However, since \(\cos(\theta) > 0 \), the valid interval is where \(\cos(\theta) > \frac{-1 + \sqrt{5}}{2} \). Noting that cosine decreases on this interval, the correct answer is \(\left[0, \cos^{-1}\left(\frac{-1 + \sqrt{5}}{2} \right) \right] \).
22. D We need \(20 \leq 25\cos(\theta) \leq 24 \Rightarrow 4/5 \leq \cos(\theta) \leq 24/25\). This occurs over the interval
\([\arccos(24/25), \arccos(4/5)]\), (note that the order is reversed because of arccosine), so
\[
\frac{\tan(b)}{\tan(a)} = \frac{\tan(\arccos(4/5))}{\tan(\arccos(24/25))} = \frac{3/4}{7/24} = \frac{3}{4} \cdot \frac{24}{7} = \frac{18}{7}.
\]

23. D Write this as the sum of two series. For even terms, we have \(a_{2n} = \frac{2}{2^n}\) and for odd terms we have \(a_{2n+1} = \frac{1}{2^n}\). Then, \(\sum_{n=0}^{\infty} \left[\frac{2}{2^n} \cdot \sin^2(\theta) \right] + \sum_{n=0}^{\infty} \left[\frac{1}{2^n} \cdot \sin^2(\theta) \right] = \frac{2}{1 - 0.5\sin^2(\theta)} + \frac{\sin(\theta)}{1 - 0.5\sin^2(\theta)} = 4\), so \(4 - 2\sin^2(\theta) = 2 + \sin(\theta) \Rightarrow 2\sin^2(\theta) + \sin(\theta) - 2 = 0\), so \(\sin(\theta) = \frac{-1 \pm \sqrt{17}}{4}\). Taking the value on the desired interval gives \(\theta = \sin^{-1}\left(\frac{-1 - \sqrt{17}}{4}\right)\).

24. D Apply AM-GM: \(\frac{x + \frac{1}{2x}}{2} \geq \sqrt{\frac{x}{2x}} = \sqrt{\frac{1}{2}}\), so \(x + \frac{1}{2x} \geq \sqrt{2}\). This minimum can indeed be obtained when \(x = \sqrt{\frac{1}{2}}\).

25. B Multiplying gives \(p_1 = 0.9(p_1 + p_2 + p_3) = 0.9, p_2 = 0.1p_1 = 0.09, \) and \(p_3 = 0.1p_2 = 0.01\).

26. A The absolute value of anything is non-negative; there cannot be any solutions.

27. D Let \(a = \sin(x)\). Then, \(4a^3 + 2a^2 - 2a - 1 = 2a^2(2a + 1) - 1(2a + 1) = (2a - 1)(2a + 1) = 0\).

This gives \(\sin(x) = \pm \frac{1}{\sqrt{2}}\) and \(\sin(x) = -\frac{1}{2}\). This corresponds to the solutions \(\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}\) and \(\frac{7\pi}{6}, \frac{11\pi}{6}\) for a sum of \(4\pi + 3\pi = 7\pi\).

28. A The maximum value of \(|\sin(\theta) + \cos(\theta)|\) is \(\sqrt{2} < 3/2\). We could also show this by squaring both sides of the given equation and obtaining \(\sin(2\theta) = \frac{-5}{4}\) which is obviously impossible.

29. C First we find the non-real cube roots of 2: we know that they are in the form \(\sqrt[3]{2}\cis(\theta)\), so
\[2\cis(3\theta) = 2 \Rightarrow 3\theta = 0, 2\pi, 4\pi, \] so the non-real cube roots of 2 are \(\sqrt[3]{2}\cis\left(\frac{2\pi}{3}\right) = \sqrt[3]{2}\cis\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)\) and
\[\frac{3\sqrt[3]{2}}{2}\cis\left(\frac{4\pi}{3}\right) = \sqrt[3]{2}\cis\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right).\] Thus, \(x + 1 = \frac{\sqrt[3]{2}}{2} \pm \frac{\sqrt[3]{2}}{2}i\), so \(x = -\frac{\sqrt[3]{2}}{2} \pm \frac{\sqrt[3]{2}}{2}i\).

Thus, \(|a| = 1 + \frac{\sqrt[3]{2}}{2}i\).

30. A Note that
\[
\sin(x)\prod_{k=0}^{2012} \cos(2^k x) = \sin(x)\cos(x)\cos(2x)\cdots\cos(2^{2012} x) = \frac{\sin(2x)\cos(2x)\cos(4x)\cdots\cos(2^{2012} x)}{2}
\]
\[
\frac{\sin(4x) \cos(4x) \cos(8x) \cdots \cos(2^{2012}x)}{2^2} = \frac{\sin(8x) \cos(8x) \cos(16x) \cdots \cos(2^{2012}x)}{2^3} = \cdots = \frac{\sin(2^{2013}x)}{2^{2013}}.
\]

Thus, \(\sin(2^{2013}x) = \prod_{k=0}^{2012} \cos(2^k x) = \frac{\sin(2^{2013}x)}{2^{2013} \sin(x)} \Rightarrow \sin(x) = \frac{1}{2^{2013}} \Rightarrow x = \sin^{-1}\left(\frac{1}{2^{2013}}\right). \)