Alpha Bowl: Question 1

If f(x) is an even function, g(x) is an odd function, and $h(x) = \frac{f(x)}{g(x)}$, find A + B + C + D.

	f(x)	g(x)	h(x)
x = -2	3	D	???
x = -1	4	1	Α
<i>x</i> = 1	???	C	???
<i>x</i> = 2	В	???	2

2012 MAO National Convention

Alpha Bowl: Question 1

If f(x) is an even function, g(x) is an odd function, and $h(x) = \frac{f(x)}{g(x)}$, find A + B + C + D.

	f(x)	g(x)	h(x)
x = -2	3	D	???
x = -1	4	1	A
<i>x</i> = 1	???	С	???
<i>x</i> = 2	В	???	2

Consider the vector $\mathbf{v} = \langle -2, 3, k \rangle$ and find the value of $\frac{AB}{CD}$.

B = k, if $\mathbf{v} \cdot \langle 1, 2, 1 \rangle = 9$ $A = \|\mathbf{v}\|$, if k = 6

C = k, if v is orthogonal to $\langle 6, -k^2, 12 \rangle$ D = (j+k), if v is parallel to $\langle 1, j, -7 \rangle$

2012 MAO National Convention Alpha Bowl: Question 2 Consider the vector $\mathbf{v} = \langle -2, 3, k \rangle$ and find the value of $\frac{AB}{CD}$.

B = k, if $\mathbf{v} \cdot \langle 1, 2, 1 \rangle = 9$ $A = \|\mathbf{v}\|$, if k = 6

D = (j+k), if **v** is parallel to $\langle 1, j, -7 \rangle$ C = k, if **v** is orthogonal to $\langle 6, -k^2, 12 \rangle$

Consider the following information and give the value of det $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

A = the number of distinct arrangements of the letters 'ALPHABOWL'

B = the number of distinct groupings of eight students into four pairs of two students

C = the solution to the equation $C_7 = 70_9$ where the subscripts indicate bases*

D = the probability of obtaining a sum of less than 5 but greater than 2 when two fair six-sided dice are rolled

*Note that C_7 is a base 7 number, but you must use the base-10 digits of *C* in the final calculation. For example, if you obtain a solution of 24₇, then C = 24.

2012 MAO National Convention

Alpha Bowl: Question 3

Consider the following information and give the value of det $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

A = the number of distinct arrangements of the letters 'ALPHABOWL'

B = the number of distinct groupings of eight students into four pairs of two students

C = the solution to the equation $C_7 = 70_9$ where the subscripts indicate bases*

D = the probability of obtaining a sum of less than 5 but greater than 2 when two fair six-sided dice are rolled

*Note that C_7 is a base 7 number, but you must use the base-10 digits of *C* in the final calculation. For example, if you obtain a solution of 24₇, then C = 24. Find the sum of the numbers next to the identities that are always true when defined.

(1)
$$\cos(2\theta) = 2\sin^2(\theta) - 1$$
 (3) $\frac{1 + \cos(\theta)}{1 - \cos(\theta)} = 2\cot^2(\theta) + 1$

(5)
$$2\sin^2(\theta) = 1 - \sin(2\theta)$$
 (7) $\sin^4(\theta) + \cos^2(\theta) = \cos^4(\theta) + \sin^2(\theta)$

(9)
$$\sin\left(\theta - \frac{\pi}{2}\right) = \cos(\pi - \theta)$$
 (11) $\sin^2(\alpha) + \cos^2(\beta) = 1$

2012 MAO National Convention

Alpha Bowl: Question 4

Find the sum of the numbers next to the identities that are always true when defined.

(1)
$$\cos(2\theta) = 2\sin^2(\theta) - 1$$
 (3) $\frac{1 + \cos(\theta)}{1 - \cos(\theta)} = 2\cot^2(\theta) + 1$

(5)
$$2\sin^2(\theta) = 1 - \sin(2\theta)$$
 (7) $\sin^4(\theta) + \cos^2(\theta) = \cos^4(\theta) + \sin^2(\theta)$

(9)
$$\sin\left(\theta - \frac{\pi}{2}\right) = \cos(\pi - \theta)$$
 (11) $\sin^2(\alpha) + \cos^2(\beta) = 1$

Consider the following information and give the value of A + B.

A = the sum of all numbers of the form 2^{p} such that p is an integer and $2^{p} < 2012$

B = the sum of all numbers of the form $2^{j}3^{k}$ such that j and k are positive integers less than 5

2012 MAO National Convention

Alpha Bowl: Question 5

Consider the following information and give the value of A + B.

A = the sum of all numbers of the form 2^{p} such that p is an integer and $2^{p} < 2012$

B = the sum of all numbers of the form $2^{j}3^{k}$ such that j and k are positive integers less than 5

Alpha Bowl: Question 6

Find the value of (x+y) given that $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 230 \\ 43 \end{bmatrix}$, where

 $A = \text{the solution to } 4^a - 4^{a-1} = 24 \qquad \qquad B = {}_6P_2$

C = the solution to $\log_3(b+1) = \log_3(b-1) + 2$ D = the number of real solutions to $x^2 = 2^x$

2012 MAO National Convention

Alpha Bowl: Question 6

Find the value of (x+y) given that $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 230 \\ 43 \end{bmatrix}$, where A = the solution to $4^a - 4^{a-1} = 24$ $B = {}_6P_2$

C = the solution to $\log_3(b+1) = \log_3(b-1) + 2$ D = the number of real solutions to $x^2 = 2^x$

Consider the following information and compute *ABCD*.

Let r_1 , r_2 , and r_3 be the roots of the function $f(x) = 2x^3 - 4x^2 + 4x - 1$.

$$A = r_1 + r_2 + r_3 \qquad B = r_1 r_2 r_3 \qquad C = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \qquad D = \frac{r_2 + r_3}{r_1} + \frac{r_3 + r_1}{r_2} + \frac{r_1 + r_2}{r_3}$$

2012 MAO National Convention Alpha Bowl: Question 7

Consider the following information and compute ABCD.

Let r_1 , r_2 , and r_3 be the roots of the function $f(x) = 2x^3 - 4x^2 + 4x - 1$.

$$A = r_1 + r_2 + r_3 \qquad B = r_1 r_2 r_3 \qquad C = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \qquad D = \frac{r_2 + r_3}{r_1} + \frac{r_3 + r_1}{r_2} + \frac{r_1 + r_2}{r_3}$$

Consider the following information and find the exact value of A + B - C + D.

$$A = \sin\left(\frac{-\pi}{24}\right) \qquad B = \sin\left(\frac{15\pi}{24}\right) \qquad C = \cos\left(\frac{3\pi}{24}\right) \qquad D = \cos\left(\frac{11\pi}{24}\right)$$

2012 MAO National Convention

Alpha Bowl: Question 8

Consider the following information and find the exact value of A + B - C + D.

$$A = \sin\left(\frac{-\pi}{24}\right) \qquad B = \sin\left(\frac{15\pi}{24}\right) \qquad C = \cos\left(\frac{3\pi}{24}\right) \qquad D = \cos\left(\frac{11\pi}{24}\right)$$

Consider the following information regarding polar equations and find $\frac{A}{\pi} + \frac{B}{1006}$.

A = the area bounded by graph of $r^2 = r \sin \theta + 4$

 $B = \sum_{n=1}^{2012} P(n)$, where P(n) is the number of petals in the graph of $r = 2012 \cos(n\theta)$

2012 MAO National Convention

Alpha Bowl: Question 9

Consider the following information regarding polar equations and find $\frac{A}{\pi} + \frac{B}{1006}$.

A = the area bounded by graph of $r^2 = r \sin \theta + 4$

$$B = \sum_{n=1}^{2012} P(n)$$
, where $P(n)$ is the number of petals in the graph of $r = 2012 \cos(n\theta)$

Consider the following parametric equations when graphed in the xy – plane and find ABC.

A = the area bounded by the graph of $x(t) = 4\sin(\theta)$ and $y(t) = 9\cos(\theta)$

B = the number of letters in the name of the conic defined by x(t) = t and $y(t) = t^2 - 2t + 4$

C = the value of r where (x(r), y(r)) = (x(s), y(s)) and r > s, given that $x(t) = t^2 - t$ and $y(t) = t^3 - 4t$

2012 MAO National Convention

Alpha Bowl: Question 10

Consider the following parametric equations when graphed in the xy – plane and find ABC.

A = the area bounded by the graph of $x(t) = 4\sin(\theta)$ and $y(t) = 9\cos(\theta)$

B = the number of letters in the name of the conic defined by x(t) = t and $y(t) = t^2 - 2t + 4$

C = the value of r where (x(r), y(r)) = (x(s), y(s)) and r > s, given that $x(t) = t^2 - t$ and $y(t) = t^3 - 4t$

Consider the following information and find the value of A - B.

A = the sum of all values of $\theta \in (0, 2\pi)$ such that $2\cos^2(3\theta) = \cos(3\theta)$

B = the sum of all values of $\theta \in (0, 2\pi)$ such that $\cos(4\theta) + 3\sin(2\theta) = 2$

2012 MAO National Convention

Alpha Bowl: Question 11

Consider the following information and find the value of A - B.

A = the sum of all values of $\theta \in (0, 2\pi)$ such that $2\cos^2(3\theta) = \cos(3\theta)$

B = the sum of all values of $\theta \in (0, 2\pi)$ such that $\cos(4\theta) + 3\sin(2\theta) = 2$

Consider the following information and find the value of $(\tan(A+B) + \tan(C-D))$.

A = the acute angle formed when the line x - 2y = 8 intersects the x - axis

B = the obtuse angle formed when 3x + 4y = 10 intersects the x-axis

C = the acute angle formed when 3x + 4y = 10 intersects the x-axis

D = the obtuse angle formed when the line x - 2y = 8 intersects the x-axis

2012 MAO National Convention Alpha Bowl: Question 12

Consider the following information and find the value of $(\tan(A+B) + \tan(C-D))$.

A = the acute angle formed when the line x - 2y = 8 intersects the x-axis

B = the obtuse angle formed when 3x + 4y = 10 intersects the x-axis

C = the acute angle formed when 3x + 4y = 10 intersects the x-axis

D = the obtuse angle formed when the line x - 2y = 8 intersects the x-axis

2012 MAO National Convention Alpha Bowl: Question 13

The mathematical constant $e \approx 2.72$ can be defined in several ways. Two of them are as follows:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \qquad \qquad e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Use these definitions to evaluate the following expressions, and give the value of AB.

$$A = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{4n} \qquad \qquad B = \frac{0}{1!} + \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots$$

2012 MAO National Convention

Alpha Bowl: Question 13

The mathematical constant $e \approx 2.72$ can be defined in several ways. Two of them are as follows:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \qquad \qquad e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Use these definitions to evaluate the following expressions, and give the value of AB.

$$A = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{4n} \qquad \qquad B = \frac{0}{1!} + \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots$$

Define three sequences as follows: A is an arithmetic sequence with *n*th term A_n , G is a geometric sequence with *n*th term G_n , and X is a sequence such that its *n*th term is $X_n = A_n + G_n$. If $A_1 = 0$, $X_1 = X_2 = 1$, and $X_3 = 2$, find the difference between the maximum and minimum values of $\sum_{n=1}^{10} X_n$.

2012 MAO National Convention

Alpha Bowl: Question 14

Define three sequences as follows: A is an arithmetic sequence with *n*th term A_n , G is a geometric sequence with *n*th term G_n , and X is a sequence such that its *n*th term is $X_n = A_n + G_n$. If $A_1 = 0$, $X_1 = X_2 = 1$, and $X_3 = 2$, find the difference between the maximum and minimum values of $\sum_{n=1}^{10} X_n$.