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Nationals 2012
                                         Calculus:  Area and Volume
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The abbreviation NOTA means "None of the Above" and should be chosen if none of the previous choices (A through D) are correct. Diagrams may not be drawn to scale.
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1.  
     A rectangle has two vertices on the curve
     
[image: image248.bmp] and the other two on the x-axis as 
     shown, and the rectangle is symmetric to the 
     y-axis.  What is the greatest possible  area of the 
     rectangle?


A. 
[image: image2.wmf]160

27

         B. 
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C.  
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     D.  
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E. NOTA

2.  A left-hand Riemann sum is used to approximate 
     the value of 
[image: image6.wmf]4
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xdx
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, with three equal 
     subdivisions. What is the  approximation?

A. 
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       B. 
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C.  
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        D. 
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E. NOTA

3.  What is the area bounded by the graphs 
     of  
[image: image11.wmf]yx

=

 and 
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x

y

=

?


A. 
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      B. 
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C.  
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    D. 
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E.  NOTA

4.  Region R is bounded by the graphs of 
      
[image: image17.wmf]yx

=

 and 
[image: image18.wmf]yx

=

.  A solid has base R and

      cross sections perpendicular to the y-axis

      are semi-circles.  Give the volume of the
     solid.


A.  
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 B. 
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    C.     
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           D.  
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E. NOTA
5.  Region R is defined as the region between the x-

    axis, the lines 
[image: image23.wmf]xa

=

 and 
[image: image24.wmf]xb

=

 and the curve of a 
    continuous graph 
[image: image25.wmf]()
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, given 
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 for all 
    values of x. Which is a sufficient condition for a 
    trapezoidal approximation for 
[image: image27.wmf]()
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 to be an 
     over-approximation of the  exact area of R?

A. 
[image: image28.wmf]f

 is increasing over (a, b).


B.  
[image: image29.wmf]f

 is decreasing over (a, b).


C.  
[image: image30.wmf]f

 is concave up over (a, b).


D.  
[image: image31.wmf]f

 is concave down over (a, b).


E.  NOTA

6.  For the region R defined in problem #5, which is
     a sufficient condition for a right-hand Riemann 
     sum approximation of 
[image: image32.wmf]()
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 to be an 
     over-approximation of the exact area of R?


A. 
[image: image33.wmf]f

 is increasing over (a, b).


B.  
[image: image34.wmf]f

 is decreasing over (a, b).


C.  
[image: image35.wmf]f

 is concave up over (a, b).


D.  
[image: image36.wmf]f

 is concave down over (a, b).


E.  NOTA

7.  A midpoint Riemann sum approximation with 4 

     equal subdivisions of the area of region R bounded 
     by 
[image: image37.wmf]2
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 and the lines 
[image: image38.wmf]4
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 and 
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 is k 
     times the exact area of the region R.  Give the 
     value of k.


A. 
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   B.  
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      C. 
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    D.  
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64


  

E.  NOTA
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8.   Which of the following
      integral expressions 
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      gives the total shaded

      area to the right,  bounded
     by  
[image: image44.wmf]2
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 and the

      x-axis?


A. 
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          B. 
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C. 
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1

(()1)

fxdx

-

+

ò

     D. 
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E.  NOTA
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9.  


An isosceles trapezoid has smaller base 8
    and legs 8 each.  Find the value of the  acute angle 
    θ between the larger base and one leg so that the 
    area of the  trapezoid is maximized. 


A. 
[image: image50.wmf]3
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  B. 
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C.  
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    D. 
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E.  NOTA

10.  A triangle has two sides 12 cm and 10 cm.

       The third side varies: initially 
[image: image54.wmf]213

 cm with the

       angle (θ) opposite the 
[image: image55.wmf]213

 cm side 
       increasing so that the area of the triangle 

       is increasing at  0.2 sq. cm per minute. 

       Find the rate at which θ is changing in radians 

       per minute when the side opposite θ is 10 cm.


A. 
[image: image56.wmf]1
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       B.   
[image: image57.wmf]1
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C.  
[image: image58.wmf]1
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       D. 
[image: image59.wmf]4

109

      E. NOTA
11.  A spherical snowball is melting so that its radius 
      is decreasing at 0.2 cm/sec. As it melts, the 
      snowball retains a spherical shape.  Find the 
      absolute value of the rate at which its volume is 
      changing in cubic cm per second when its surface 
      area is 
[image: image60.wmf]36

p

 sq. cm.


A.  
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        B. 
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C.  
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        D. 
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E. NOTA

12.   Ship A is at point P and moving north at a speed 
     of 5 km/hr at noon. At the same time ship B is 10 
     km west of point P and moving east at 8 km/hr.  At 
     1:00 p.m. tell the rate that the area of the 
     triangle determined by the two ships and point P is 
     changing in sq. km per hour.


A. 
[image: image65.wmf]30
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       B. 
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  C. 
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D.   
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       E. NOTA

13. A candle, when first bought, was in the shape of a 
   right circular cylinder of radius 6 inches and height 
   8 inches. As it burns it decreases height only and 
   keeps its radius and cylindrical shape the same. If 
   it loses 1 inch of height per hour then tell how many 
   cubic inches it loses per hour as it burns.


A. 36
  B. 36π

C. π
  D.  1

E. NOTA

14.  If 
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 for all x and 
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 = 4

      then give the area bounded by the graphs
      of 
[image: image71.wmf]()()2
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, x=0, x=5 and y=0.


A. 6
   B. 9
     C. 11



D. 14
   E. NOTA
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[image: image244.wmf]
15.  A sector is bounded

      by two 6-inch radii and

      a minor arc, as shown. Both

      radii are moving in opposite

      directions, increasing the area of the sector at 2 
      sq. inches per minute. When the sector has a 
      central angle of 
[image: image72.wmf]3

p

 radians, tell the rate at which 
      the length of the arc is changing in inches/hour. 

A.   
[image: image73.wmf]1

3


     B.  
[image: image74.wmf]2
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C.  
[image: image75.wmf]2
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     D.  
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E.  NOTA
[image: image245.emf]x
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16.
    Use the x-subintervals [1, 4], [4, 5], [5, 10], and 

    [10,12] to give a trapezoidal approximation for the 
    area between the graph of  
[image: image77.wmf]()

yfx
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 and the 

    x-axis between x=1 and x=12, given that f is a 

    continuous function  with exactly one root at x=5.


A. 58       B. 57    C. 56


D. 55       E. NOTA

17. The function
[image: image78.wmf]()
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 is continuous over [0, 10].      

     The area bounded by 
[image: image79.wmf]f

 and the x-axis 

      between x=0 and x=10 is S and  
[image: image80.wmf]10()10
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      Which must be true?


A. 
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                B. 
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C.  
[image: image83.wmf]10

0

()

fxdxS

=

ò

       D. 
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E.  NOTA
[image: image246.emf]x

y


18.  The "eye" logo
    that a design
    company is making
    will be created 
    by the region 
    bounded in 
    quadrant I by the

    graphs of

    
[image: image85.wmf]2
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 and 
[image: image86.wmf]2
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 and an ellipse 
     which has major axis determined by the curves as 
     shown and minor axis width 
[image: image87.wmf]2

p

. Give the area of 
     the part of the logo that is outside the ellipse 
     and inside the region bounded by parabolas.


A.
[image: image88.wmf]1


B.
[image: image89.wmf]3
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C.
[image: image90.wmf]7
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     D. 
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E.  NOTA
[image: image247.bmp]19.  

          A rectangle has two vertices on the graph

        of 
[image: image92.wmf]2

1

()

fx

x

=

 and the other two vertices on 

        the x-axis as shown.  If the height (vertical

        sides of the rectangle shown) of the

        rectangle is four times its width, then give 
        the area between the rectangle and the graph 
        of 
[image: image93.wmf]f

 over domain  
[image: image94.wmf]||2,0
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A. 7.5        B.  3.5      C. 3

D.  
[image: image95.wmf]15
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       E. NOTA
20.  


    The graph of 
[image: image96.wmf]()
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 is shown with roots r and s, 
    and r
[image: image97.wmf]<

s.  The regions bounded by the graph of 
[image: image98.wmf]f

 
    and the x-axis between x=0 and x=6 over the  
    intervals [0, r], [r, s] and [s, 6] are 0.4, 2 and 12 
    respectively. Put in order from least to greatest: 
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  A. 
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  B.   
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  C. 
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  D. 
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  E. NOTA


21.  The area of region R, shaded,
      under 
[image: image108.wmf]2
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 between x=0,

      x=k and y=0 equals 
[image: image109.wmf]1

k

 times the 

      volume of the solid with base

     defined by R and cross-sections

     perpendicular to the x-axis which are squares.

     Give the positive value of k.


A. 
[image: image110.wmf]15

      B. 
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            C. 
[image: image112.wmf]4
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       D. 
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     E.  NOTA

22. Find the total area bounded by the graph of

     
[image: image114.wmf]244
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 and the x-axis between the

      lines x=0 and x=8.


A.  8
    B. 24

C.  32       D. 64


E. NOTA 
23. Region R is bounded by the graphs of 

     
[image: image115.wmf]ln,2
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 and 
[image: image116.wmf]0
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.  R is revolved
      about the line 
[image: image117.wmf]1
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. Which integral

     expression below gives the volume of 

     the resultant solid?


A. 
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B.  
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C.  
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D.   
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E.  NOTA

24.   Sand is falling off a conveyor belt and into

     a conical pile. The height of the pile is growing at 
    
[image: image122.wmf]1

4

 ft/minute. When the pile is 9 ft high and the 
     diameter of the base of the pile is 8 feet and 
     the sand is falling into it at 
[image: image123.wmf]2

p

 cubic feet per 
     minute, then tell the rate at which the diameter

     of the base of the pile is growing, in ft per minute.

A. 
[image: image124.wmf]1
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        B. 
[image: image125.wmf]1
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C.  
[image: image126.wmf]1

18

        D. 
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E.  NOTA

25.    Region R is bounded by the graphs of 

       
[image: image128.wmf]yx
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 and 
[image: image129.wmf]1

y
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 and 
[image: image130.wmf]4
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 in quadrant I.

       Region R is revolved about the line 
[image: image131.wmf]2

y
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.

       Give the volume of the resultant solid.


A. 
[image: image132.wmf]14
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B.
[image: image133.wmf]15
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C. 
[image: image134.wmf]229
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D.  
[image: image135.wmf]67
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E. NOTA

26.  



  The graph of the curve 
[image: image136.wmf]()
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 and the line   

  
[image: image137.wmf]()
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 bound two regions  as shown,  with   

  respective areas 4 and 7. The equation 
[image: image138.wmf]()()
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  has exactly three solutions, x=0.5,  x=3.2 and x=6.1.  
  If 
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 then give 
   the value of  
[image: image141.wmf]6.1
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.


A. -18.2
B. -4.2        C. -3.8

D.  -3    
E.  NOTA

27.  The rate of increase of the volume of a spherical 
    balloon, in cubic cm per minute, is directly 
    proportional to the rate of increase of its surface 
    area, in sq. cm per minute. The constant of 
    proportionality is equal, at time 
[image: image142.wmf]t

 minutes, to 

A. the diameter of the sphere in cm.


B.  π cm.


C.  the radius of the sphere in cm.


D. the square of the radius in sq. cm.


E.  NOTA

28. A right rectangular prism has a square base. The

    box's volume is to be maximized and surface area

    is to be 100 sq. cm.  What is the area of one of the 

    square bases of the prism, in sq. cm?


A. 
[image: image143.wmf]50

3

       B. 
[image: image144.wmf]100

3

      C. 
[image: image145.wmf]75
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D.  10        E. NOTA
29.   The graph of 
[image: image146.wmf]()0.6cos(1)
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    defines a curve that, when rotated about the
    y-axis, will produce a solid that is to be the shape 
    and size (units are mm) of a new cookie to be 
    marketed.  Which integral expression will give the 

    amount of cubic mm each

    cookie will contain?

   A. 
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   B.  
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   C.   
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   E. NOTA

30.  A continuous function 
[image: image151.wmf]()

vt

 gives the velocity
     in feet/minute that a turtle moves as it travels 
     left and right along a linear path for time 
     interval [0, 10] minutes. The turtle changes 
     direction at least once in this interval.  If the 
     area bounded by the graph of 
[image: image152.wmf]()
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, the lines

     
[image: image153.wmf]0,10

tt

==

 (minutes) and the 
[image: image154.wmf]t
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axis is A then 
     what is the meaning of A?

A. the net change in velocity of the turtle


     over [0, 10] minutes, in ft/min.


B. the displacement of the turtle, in feet,


    from t=0 to t=10 min.


C. the area covered by the turtle on the 

               path as it walks, in sq. feet, over [0, 10] min.

            D.  the total distance traveled in feet by the 
                 turtle, over [0, 10] min.

E. NOTA

     
Solutions: 


1. The area of the rectangle with vertex in quadrant I
   of (x, y) is 
[image: image155.wmf]23
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, so the max

   occurs when 
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   Area is then 
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2.  The approximation is 
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3.  The intersections occur when 
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      at x=0, 4.   
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4.  Intersections at x=0, 1. 
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[image: image164.wmf](
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.  A.
5.  C. An over-approximation occurs only when f is 
     concave up.

6.  A. An over-approximation occurs only when f is

     increasing.

7.  Exact area is 
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 and the approximation 

     is  
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 so  21 = k (64/3)

     and k=63/64.  D.
8.  E. None are correct. The first gives the abs value
    of a difference of some of the areas. The second

    would be correct if 4/3 had been 8/3 since the

    area of the part under the x-axis is 4/3. 

9. The height of the trapezoid is 8 sinθ and the lower

    base is 8cosθ+8+8cosθ. The area is therefore
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qq

-+=

.

   Since θ is acute, cosine cannot be -1, so cosine must
   be ½ and θ=
[image: image175.wmf]3
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. A.

10.  Area = 
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.  0.2=60cosθ
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.  To find

   cosθ we use the law of cosines: 
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 and cosθ=3/5.

    0.2=60(3/5)
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11. 
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 = 36π(0.2)= 7.2π.  D.

12. 
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13. Calculus not needed: It loses the volume of the

   cylinder with height 1 inch, radius 6: 36
[image: image185.wmf]p

. B.

14. 
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 = 4+10=14. D.

15. For acute central angle x area of the sector is 
    
[image: image187.wmf]3618
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 and this area is changing at a 

    rate 
[image: image188.wmf]18
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 so if dA/dt=2 then dx/dt= 1/9. The

    arc has length 
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 = 6x so its length is 

   changing at 
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 = 2/3.  B.

16.  Given the data in the table and that the 

    point (5,0) is included, we get trap areas
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 for a sum 30+4+10+13 = 57. Note

     the intervals use x=5, not x=6.  Answer B.

17.  The area could be of the rectangle defined by

    y=10 from x=0 to x=10, which is 100. The 

    integral could range from 0 (example: f(x)=2x-10)

    to 100. So A is true. All others may be true but 

    do not have to be.

18.  The ellipse: at x=2 we have y-values of parabolas

    to be 1 and 4 so the major axis has length 3 and 

    minor axis 
[image: image195.wmf]2
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, and thus a=3/2, b=
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 and area of 

    the ellipse is 
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.  The area

   between the parabolas is 

    
[image: image198.wmf]3

22

1

[(3(2))((2)1)]

xxdx

----+

ò

 = 
     
[image: image199.wmf]3

2

1

[22(2)]

xdx

--

ò

 = 
[image: image200.wmf]3

3

2

2(2)

1

3

xx

--


    = 
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    ellipse area 
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19.  H=4W so 
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20.  m= 0.4-2 = -1.6 since s<0. 
       p = 2-12 = -10.      q=|-0.4+2-12|=10.4
       n=0.4+2+12=14.4,   t=11,  u=1.

      In order p, m, u, q, t, n. Answer D.

21. 
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 so 
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. k=5/3.
22.  The area of the 
   two triangles is

   ½ ( 4)(4) + ½ (4)(8)
    = 8+16 = 24.
   Answer B.
23.  Since we are 
    revolving about a

    vertical axis, we can use y-variables with the 

    expression  
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24.  
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;  2= 24(dr/dt)+4/3

       2/3 ( 1/24) = 1/36 for dr/dt so the diameter is

       increasing at twice this, or 1/18.  C.
25. 
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26. 
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    so 2.8 - 
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    Similarly, 
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27.  
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      radius. E.

28. With dimensions x, x, y we get 
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   and 
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    or when x=
[image: image235.wmf]50
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 since we use the principal root.

     The area of the base is then 50/3.  A.
29.  A rotational solid needs the format
[image: image236.wmf]2
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 for

      y-variables. The y-values range from 0 to 

      f(0)=0.6π. D.

30.  D. Area gives total distance traveled. An integral

     with no abs. value gives displacement. D.
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