1. A circle has a radius of \(\frac{x - 2}{\sqrt{x} - \sqrt{2}} \), where defined. Determine the area of the circle in terms of \(x \).

(A) \(\pi (\sqrt{x} - \sqrt{2}) \)
(B) \(\pi (\sqrt{x} + \sqrt{2}) \)
(C) \(\pi (x - \sqrt{2x} + 2) \)
(D) \(\pi (x + \sqrt{2x} + 2) \)
(E) NOTA

For Problems 2, 3, and 4, use the following information:

Parallel lines \(\Omega \) and \(\rho \) are drawn below. A transversal \(\Sigma \) is drawn passing through \(\omega \) and \(\rho \) and angles \(\alpha_i \) for \(1 \leq i \leq 8 \) are identified below.

2. Let \(\alpha_1 = 70^\circ \). Compute the measure of \(\alpha_7 \), in degrees.

(A) 35\(^\circ\)
(B) 70\(^\circ\)
(C) 110\(^\circ\)
(D) 145\(^\circ\)
(E) NOTA

3. Let \(\alpha_1 = 70^\circ \). Consider two positive integers \(i, j \) such that \(1 \leq i, j \leq 8 \) where \(i \) is even and \(j \) is odd. Compute the maximum possible value of \(\alpha_i + \alpha_j \).

(A) 70\(^\circ\)
(B) 140\(^\circ\)
(C) 180\(^\circ\)
(D) 220\(^\circ\)
(E) NOTA

4. Let \(0 < \alpha_1 < 90^\circ \). It is clear that \(\sum_{i=1}^{8} \alpha_i = 720^\circ \). Consider, however, the sum \(S = \left(\sum_{i=1}^{8} \alpha_i \right) - \alpha_k \) where \(k \) is a positive integer randomly chosen from the set \(\{1, 2, \ldots, 8\} \). What is the probability that \(S > 630^\circ \)?

(A) 1/8
(B) 1/4
(C) 1/2
(D) 3/4
(E) NOTA
5. Consider a line segment AB. Point C is chosen on AB such that $\frac{AC}{AB} = \frac{1}{5}$ and point D is randomly chosen on AB between C and B. The segments AC, CD, and DB are used to make a triangle T. Compute the probability that T is nondegenerate.

(A) $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{3}{4}$ (D) $\frac{4}{5}$ (E) NOTA

6. Rectangle $ABCD$ has area 96. Parallelogram $ACEF$ is drawn such that EF passes through D. What is the area of $ACEF$?

(A) 48 (B) 72 (C) 96 (D) 108 (E) NOTA

7. Let a unit polygon be a regular polygon with an area of 1. Compute the perimeter of the unit triangle.

(A) $\frac{1}{\sqrt{3}}$ (B) $\frac{2}{\sqrt{3}}$ (C) $\frac{4}{\sqrt{3}}$ (D) $\frac{6}{\sqrt{3}}$ (E) NOTA

8. Consider the unit polygon defined in question 7. As the number of sides of the unit polygon increases, the perimeter of the unit polygon approaches a certain number. Specifically, let $n = 10,000,000,000$. Which of the following is closest to the perimeter of a unit polygon with n sides?

(A) $\frac{1}{\sqrt{\pi}}$ (B) $\frac{2}{\sqrt{\pi}}$ (C) $\sqrt{\pi}$ (D) $2\sqrt{\pi}$ (E) NOTA

9. Consider the function $f(x) = |x + |x||$. Determine the area of the region above the x-axis, below $f(x)$, and between $x = 1$ and $x = -1$.

(A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA

10. Consider the sequence $a_n = \{0, -1, -1, \ldots\}$ defined by $a_n = \frac{n(n-3)}{2}$ for $n \geq 0$. There exists a positive integer z such that $a_z = 275$. Determine the number of diagonals in a regular polygon with z sides.

(A) 25 (B) 26 (C) 27 (D) 28 (E) NOTA

11. Determine the area of a rhombus inscribed in a circle with radius 6.

(A) 36 (B) 72 (C) 144 (D) Need More Info (E) NOTA
12. Consider a nondegenerate triangle T and denote the *trisection points* of this triangle as the three sets of two points which trisect each side of the triangle. If we connect the trisection points in clockwise order we obtain a hexagon H. Compute the value of $\frac{[H]}{[T]}$, where $[R]$ denotes the area of the region R.

(A) $\frac{1}{9}$ (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) $\frac{2}{3}$ (E) NOTA

13. A circle is drawn through the points $(2,5)$, $(0,-1)$, and $(-3,1)$. If the center of the circle can be written as $\left(\frac{a}{c}, \frac{b}{c}\right)$, where a, b, c are positive integers, $\gcd(a, b) = 1$ and $\gcd(b, c) = 1$, compute the value of $a + b + c$.

(A) 74 (B) 75 (C) 76 (D) 77 (E) NOTA

14. A chord \overline{AB} is drawn in a circle of radius 4 such that its midpoint is at a distance of 2 from the center. A circle is then inscribed within the ensuing circular segment. Compute the area of region R, the shaded region shown below.

(A) $\frac{13\pi}{6} - 4\sqrt{3}$ (B) $\frac{13\pi}{6} - 2\sqrt{3}$ (C) $\frac{13\pi}{3} - 4\sqrt{3}$ (D) $\frac{13\pi}{3} - 2\sqrt{3}$ (E) NOTA

15. The lengths of the sides of a certain nondegenerate triangle are in the ratio $2:4:5$. The lengths of the altitudes of this same triangle can be written as $a:b:c$, where a, b, c are positive integers such that their greatest common factor is 1. Compute $a + b + c$.

(A) 17 (B) 18 (C) 19 (D) 20 (E) NOTA
16. What is the area of the region defined by $|x + y| < 2$ and $0 < x < 2$?

(A) 2 (B) 4 (C) 6 (D) 8 (E) NOTA

17. Square $ABCD$ has a side length of 4 and two equilateral triangles ABE and ABF are drawn such that E is on the interior of $ABCD$ and F is on the exterior of $ABCD$. Determine the area of triangle CFE.

(A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) $4\sqrt{3}$ (D) $8\sqrt{3}$ (E) NOTA

18. The height of a right circular cone with a volume of 1 is three times the length of its radius. Compute the length of the radius of the cone.

(A) $\frac{1}{\sqrt[1/2]{\pi}}$ (B) $\frac{1}{\sqrt[1/3]{\pi}}$ (C) $\frac{3}{\sqrt[1/2]{\pi}}$ (D) $\frac{3}{\sqrt[1/3]{\pi}}$ (E) NOTA

19. A parallelogram has 3 of its vertices at $(1, 2)$, $(3, 8)$, and $(4, 1)$. There are 3 possible points for the fourth vertex. Let k be the sum of the coordinates of the fourth point. Determine the sum of all possible k.

(A) 18 (B) 19 (C) 20 (D) 21 (E) NOTA

20. Consider square $ABCD$ with side length 1. Isosceles triangle ABE where $AE = BE$ is drawn on the exterior of the square such that the lengths CD, AC, and CE are in increasing geometric progression. Determine the area of ABE.

(A) $\frac{\sqrt{15}}{4} - \frac{1}{2}$ (B) $\frac{\sqrt{15}}{2} - 1$ (C) $\frac{\sqrt{15}}{4}$ (D) $\frac{\sqrt{15}}{2}$ (E) NOTA

21. Compute the volume of a cylinder with a radius of r and a height of $\frac{1}{r}$, where defined.

(A) π (B) $\frac{\pi}{r}$ (C) πr (D) πr^2 (E) NOTA

22. Circle ω is circumscribed about triangle ABC with $AB = 4$, $BC = 6$, and $AC = 3$. Point D is chosen on ω such that chord AD intersects BC at its midpoint M. Compute the length of MD.

(A) $\frac{9\sqrt{14}}{r}$ (B) $\frac{11\sqrt{14}}{r}$ (C) $\frac{13\sqrt{14}}{r}$ (D) $\frac{15\sqrt{14}}{r}$ (E) NOTA
23. A square is inscribed in a 60° sector of a circle with radius 6 such that two of its consecutive vertices lie on the arc of the sector. Compute the area of the square.

(A) $9(2 - \sqrt{3})$ (B) $18(2 - \sqrt{3})$ (C) $27(2 - \sqrt{3})$ (D) $36(2 - \sqrt{3})$ (E) NOTA

24. Determine the area of a triangle with a perimeter of 18 and an inradius of 8.

(A) 36 (B) 72 (C) 96 (D) 108 (E) NOTA

25. The region R is comprised of square $ABCD$ with side length 4 and four equilateral triangles drawn on the exterior of $ABCD$ such that each triangle shares one distinct side with the square. Determine the area of the smallest square which contains R.

(A) $16 - 8\sqrt{3}$ (B) $32 - 16\sqrt{3}$ (C) $16 + 8\sqrt{3}$ (D) $32 + 16\sqrt{3}$ (E) NOTA

26. Define $F(n)$ as the sum of the exterior angles (one at each angle and in degrees) of an n-sided convex polygon. Compute $F(3) + F(4) + \cdots + F(n)$ in terms of n.

(A) $360n - 1080$ (B) $360n - 720$ (C) $360n - 360$ (D) $360n$ (E) NOTA

27. Right triangle ABC has $AB = 9$, $BC = 12$, and $AC = 15$. Points E, F, and G are chosen on sides AB, BC and AC respectively such that $BE = 3$, $BF = 8$, and $CG = 5$. Compute the area of triangle EFG.

(A) 6 (B) 8 (C) 12 (D) 16 (E) NOTA

28. Let S_1 be a square with side length 10. We form S_2 by connecting the midpoints of the sides of S_1 and continue this process; thus the square S_n is formed by connecting the midpoints of the sides of S_{n-1}. Compute $\sum_{n=1}^{\infty} [S_n]$. Note: $[H]$ denotes the area of the region H.

(A) 125 (B) 150 (C) 175 (D) 200 (E) NOTA
For Problems 29 and 30, use the following information:

British Flag Theorem. Consider some rectangle $ABCD$ and a point P chosen on the same plane. Then the following is satisfied:

$$AP^2 + CP^2 = BP^2 + DP^2.$$

29. Consider a square $ABCD$ and a point P chosen on its interior. If $AP = 5$, $BP = 3$, and $CP = 4$, compute the length of DP.

(A) $2\sqrt{2}$
(B) $3\sqrt{2}$
(C) $4\sqrt{2}$
(D) $5\sqrt{2}$
(E) NOTA

30. Consider some rectangle $ABCD$ such that $AB = 8$ and $BC = 6$. A square $EBDF$ is drawn such that it has diagonal BD as a side and contains point A. Compute the value of $(EA - FA)(EA + FA)$.

(A) 22
(B) 24
(C) 26
(D) 28
(E) NOTA