ANSWERS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>C A A A B</td>
</tr>
<tr>
<td>(16)</td>
<td>D B A A C</td>
</tr>
<tr>
<td>(6)</td>
<td>B D D A B</td>
</tr>
<tr>
<td>(21)</td>
<td>D B C B C</td>
</tr>
<tr>
<td>(11)</td>
<td>C D D A A</td>
</tr>
<tr>
<td>(26)</td>
<td>D C B C C</td>
</tr>
</tbody>
</table>

SOLUTIONS

1. We have

\[
\sqrt{-1} \cdot \sqrt{-3} \cdot \sqrt{-11} \cdot \sqrt{-61} = i \cdot i \cdot i \cdot \sqrt{1 \cdot 3 \cdot 11 \cdot 61} = i^4 \sqrt{2013} = \sqrt{2013}, \text{ C.}
\]

2. The powers of \(i \) cycle between \(i, -1, -i, \) and 1. Thus, we have

\[
i^{2013} = (i^4)^{503} \cdot i = i, \text{ A.}
\]

3. The absolute value of the entire fraction is the ratio of the absolute values of the numerator and denominator. Using this, we have

\[
\left| \frac{3 + 4i}{5 + 12i} \right| = \left| \frac{3 + 4i}{5 + 12i} \right|
\]

\[
= \frac{5}{13}, \text{ A.}
\]
4. We let x equal the expression we wish to evaluate. With a substitution, we obtain

$$x = \sqrt{\frac{i}{4}} + \sqrt{\frac{i}{4}} + \sqrt{\frac{i}{4}} + \cdots = \sqrt{\frac{i}{4}} + x.$$ Solving this equation with the quadratic formula gives

$$x^2 - x - \frac{i}{4} = 0 \Rightarrow x = \frac{1 \pm \sqrt{1+i}}{2}.$$

Now, we must evaluate $\sqrt{1+i}$. We can write this in cis form as $1+i = \sqrt{2}\cis\left(\frac{\pi}{4}\right)$. To take the square root of this, we utilize de Moivre's Theorem to obtain

$$\left[\sqrt{2}\cis\left(\frac{\pi}{4}\right)\right]^{1/2} = 2^{1/4}\cis\left(\frac{1}{2}\left(\frac{\pi}{4} + 2\pi k\right)\right), k = 0, 1
= 2^{1/4}\cis\left(\frac{\pi}{8} + \pi k\right), k = 0, 1.$$

Combining this with the rest of the solution gives

$$x = \frac{1 \pm 2^{1/4}\cis\left(\frac{\pi}{8} + \pi k\right)}{2}, k = 0, 1
= \frac{1}{2} + 2^{-3/4}\cis\left(\frac{\pi}{8} + \pi k\right), k = 0, 1, \quad [A]$$

5. Note that $\text{Re}(\cis\theta) = \cos\theta$ and $\text{Im}(\cis\theta) = \sin\theta$. Thus, we have

$$\prod_{n=1}^{45} \text{Re}[\cis((2n-1)\degree)] = \frac{\cos 1\degree \cos 3\degree \cdots \cos 89\degree}{\sin 2\degree \sin 6\degree \cdots \sin 178\degree}
= \frac{\cos 1\degree \cos 3\degree \cdots \cos 89\degree}{(2\sin 1\degree \cos 1\degree)(2\sin 3\degree \cos 3\degree)(2\sin 89\degree \cos 89\degree)}
= \frac{1}{2^{45}}\left(\frac{1}{\sin 1\degree \sin 3\degree \cdots \sin 89\degree}\right).$$

The bottom expression can be written as
\[
\sin 1^\circ \sin 3^\circ \ldots \sin 89^\circ = \frac{\sin 1^\circ \sin 2^\circ \sin 3^\circ \ldots \sin 89^\circ}{\sin 2^\circ \sin 4^\circ \ldots \sin 88^\circ} \\
= \frac{\sin 1^\circ \sin 2^\circ \sin 3^\circ \ldots \sin 89^\circ}{(2 \sin 1^\circ \cos 1^\circ)(2 \sin 2^\circ \cos 2^\circ) \ldots (2 \sin 44^\circ \cos 44^\circ)} \\
= \frac{1}{2^{45}} \left(\frac{\sin 45^\circ \sin 46^\circ \sin 47^\circ \ldots \sin 89^\circ}{\cos 1^\circ \cos 2^\circ \ldots \cos 44^\circ} \right) \\
= \frac{\sqrt{2}}{2^{45}} \left(\frac{\sin 46^\circ \sin 47^\circ \ldots \sin 89^\circ}{\sin 89^\circ \sin 88^\circ \ldots \sin 46^\circ} \right) \\
= 2^{-89/2},
\]

where we have used the fact that \(\sin(90^\circ - \theta) = \cos \theta \). Our answer is then

\[
2^{-45} \left(\frac{1}{2^{-89/2}} \right) = 2^{4/2}. \quad [B]
\]

6. The powers of \(i \) contain two sets of numbers that are additive inverses of each other, namely \((1, -1)\) and \((i, -i)\). Thus the only sets of four numbers that will satisfy \(a = 0 \) are permutations of either \((1, 1, -1, -1), \ (i, i, -i, -i), \) and \((i, -i, 1, -1)\). The first two have \(\binom{4}{2} = 6 \) distinct arrangements each, while the last has \(4! = 24 \) total arrangements, giving \(2(6) + 24 = 36 \) overall. There are \(4^4 = 256 \) possibilities, giving a probability of

\[
\frac{36}{256} = \frac{9}{64}. \quad [B]
\]

7. The solutions to the equation \(z_k \) form a hexagon in the complex plane, similar to the 6th roots of unity, except the side length of the hexagon is \(\sqrt{729} = 3 \). Thus \(|z_3 - z_6| \) is equal to the distance between two diagonally opposite points on the hexagon. This is simply \(2(3) = 6 \). \quad [D]

8. We have \(v_1 = \langle a, b \rangle \) and \(v_2 = \langle c, d \rangle \), giving \(v_1 \cdot v_2 = ac + bd \). Intuition would lead us to try \(\text{Re}(z \cdot w) = ac - bd \). This, however, is the conjugate of what we wish to obtain. Naturally, we would then take the conjugate of either \(z \) or \(w \). This gives us

\[
\text{Re}(\overline{z} \cdot w) = \text{Re}((ac + bd) + i(ad - bc)) = ac + bd, \quad [D]
\]
9. Going by the definition, we have
\[
\left(\frac{i}{4} \right) = \frac{i(i-1)(i-2)(i-3)}{4!} = \frac{-10}{24} = -\frac{5}{12}, \ A.
\]

10. We have
\[
2(\text{cis}35^\circ \otimes \text{cis}35^\circ) = 2 \cos 35^\circ \text{cis}35^\circ
\]
\[
= 2 \cos 35^\circ (\cos 43^\circ + i \sin 43^\circ)
\]
\[
= 2 \cos 35^\circ \cos 43^\circ + i(2 \cos 35^\circ \sin 43^\circ)
\]
\[
= (\cos(43^\circ + 35^\circ) + \cos(43^\circ - 35^\circ)) + i(\sin(43^\circ + 35^\circ) + \sin(43^\circ - 35^\circ))
\]
\[
= (\cos 78^\circ + i \sin 78^\circ) + (\cos 8^\circ + i \sin 8^\circ)
\]
\[
= \text{cis}78^\circ + \text{cis}8^\circ.
\]

Thus, we have \[\theta \varphi = (78)(8) = 624, \ B.\]

11. Note that we can rewrite the equation as \((a-6)^2 + (b-3)^2 = 64\), or the equation for a circle. If we were to convert \(z\) to the Cartesian plane, we would simply write \(z = (x, y) = (a, b)\). Hence, \(R\) is a circle with radius 8, and thus has an area of \(8^2 = 64\pi = C.\)

12. Let \(z = a + bi\). Then we have
\[
|z - z| = |a + bi - a + bi| = |a + bi - \sqrt{a^2 + b^2}|
\]
\[
= |(a - \sqrt{a^2 + b^2}) + bi|
\]
\[
= \sqrt{a^2 - 2a\sqrt{a^2 + b^2} + (a^2 + b^2) + b^2}
\]
\[
= \sqrt{2(a^2 + b^2) - 2a\sqrt{a^2 + b^2}}.
\]

Now, since \(|z| = \sqrt{a^2 + b^2}\), this becomes
\[\sqrt{2|z|^2 - 2a|z|} = \sqrt{2} \]
\[\Rightarrow |z|^2 - a|z| - 1 = 0. \]

Using the quadratic formula, we solve for \(|z|\) as \(|z| = \frac{a \pm \sqrt{a^2 + 4}}{2} \). Since \(\sqrt{a^2 + 4} > 2 \), we can take \(|z| = \frac{a + \sqrt{a^2 + 4}}{2} \). \[\text{D.} \]

13. We have

\[v_1 \cdot v_2 = x (1 + i) + y (3 + 2i) \]
\[= (x + 3y) + i (x + 2y) \]
\[= 5 + 6i. \]

This gives us the systems of equations

\[x + 3y = 5 \]
\[x + 2y = 6 \]

which we solve as \((x, y) = (8, -1)\), which gives \(x + y = 7\), \[\text{D.} \]

14. We have \(B = A - \lambda I = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -2 \\ 4 & -1 - \lambda \end{pmatrix} \). Thus,

\[\text{det}(B) = (3 - \lambda)(-1 - \lambda) - (-2)(4) \]
\[= -3 - 3\lambda + \lambda + \lambda^2 + 8 \]
\[= \lambda^2 - 2\lambda + 5 \]
\[= 0. \]

Solving gives \(\lambda = \frac{2 \pm 4i}{2} = 1 \pm 2i \), \[\text{A.} \]
15. It is clear that each \(f_n(x) \) will be a polynomial of degree 4, since the roots are the vertices of a square. Now, note that each set of roots is a rotation of \(\frac{\pi}{4} \) radians counterclockwise from the previous set of roots and furthermore, each set of roots has \(\frac{1}{\sqrt{2}} \) times the amplitude of the previous set of roots. We began with the fourth roots of unity, which are \(\text{cis} \left(\frac{\pi k}{2} \right) \), \(0 \leq k \leq 3 \). This means the \(n \)th set of roots are

\[
\left(\frac{1}{\sqrt{2}} \right)^{n-1} \text{cis} \left(\frac{\pi}{4} (n-1) + \frac{\pi k}{2} \right) = \left(\frac{1}{4} \right)^{n-1} \text{cis} \left(\pi(n-1) \right) .
\]

Of course, we can write this as

\[
x^4 = \left(\frac{1}{4} \right)^{n-1} \text{cis} \left(\pi(n-1) \right) = (-1)^{n-1} \left(\frac{1}{4} \right)^{n-1} = \left(-\frac{1}{4} \right)^{n-1} .
\]

This implies that

\[
f_n(x) = x^4 - \left(-\frac{1}{4} \right)^{n-1} .
\]

Thus we have

\[
\sum_{n=1}^{\infty} f_n(0) = -\sum_{n=1}^{\infty} \left(-\frac{1}{4} \right)^{n-1} = -\frac{1}{1+\frac{1}{4}} = -\frac{4}{5}, \quad \text{[A]}
\]

16. The function will not intersect the \(x \)-axis when it has imaginary roots. This requires that the discriminant be less than 0. We have

\[
5^2 - (4)(k^2)(9) < 0 \Rightarrow k^2 > \frac{25}{36} \Rightarrow k \in \left(-\infty, -\frac{5}{6} \right) \cup \left(\frac{5}{6}, \infty \right) , \quad \text{[D]}
\]

17. Let the roots be \(r_1, r_2, \ldots, r_{2013} \), where \(r_1 = 1 \). The sum of the roots taken two at a time can be written as \(\sum_{\text{cyc}} r_i r_j \), \(0 < i, j \leq 2013, i \neq j \). This can be written as

\[
\sum_{\text{cyc}} r_i r_j = \sum_{\text{cyc}} r_i r_a + \sum_{\text{cyc}} r_b r_c = \sum_{\text{cyc}} r_a + \sum_{\text{cyc}} r_b r_c ,
\]

Since \(r_1 = 1 \). We can see that this summation contains both the sum of the roots and the sum of the roots taken two at a time of \(g(x) = 1 + \sum_{n=4}^{2012} nx^n \). This is just

\[
-\frac{2011}{2012} + \frac{2010}{2012} = -\frac{1}{2012} , \quad \text{[B]}
\]
18. We proceed by casework. Our first case, a real result, can be achieved by rolling both real numbers or both imaginary numbers. Note that both the first and second subcases are symmetric – so the total expected value is

\[
2 \left[\frac{1}{36} \left((4+5+6)(1+2+3) \right) \right] = 2 \cdot \frac{15 \cdot 6}{36} = 5.
\]

Our second case, an imaginary result, is achieved when we multiply an imaginary number by a real number. The expected value of this is

\[
-\frac{1}{36} \left[(1+2+3)(1+2+3) + (4+5+6)(4+5+6) \right] = -\frac{29}{4}.
\]

The total expected value is \(5 - \frac{29}{4} = -2.25\). [A]

19. Writing the expression in \(\text{cis}\) form gives us

\[
(1+i\sqrt{3})^{2013} = \left[2 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \right]^{2013}
\]

\[
= 2^{2013} \left(\text{cis} \left(\frac{\pi}{3} \right) \right)^{2013}
\]

\[
= 2^{2013} \text{cis} \left(\frac{2013\pi}{3} \right)
\]

\[
= 2^{2013} \text{cis} \pi
\]

\[
= -2^{2013}, [A].
\]

20. Let the first term be \(a\) and a common ratio be \(r\). If, at some point in the series, the \(n\)th term in the series equals the first, we have \(a = ar^{n-1} \Rightarrow r^n = 1, k = n-1\). Thus the possible ratios are the \(n\)th roots of unity. There must be 50 of these roots in the second quadrant, or between 90° and 180°. Since the roots of unity are \(\text{cis} \left(\frac{2\pi k}{n} \right)\), for some \(x\), we must have

\[
\frac{360x}{k} < 90 \Rightarrow x < \frac{k}{4}
\]

\[
\frac{360(x+50)}{k} < 180 \Rightarrow x < \frac{k}{2} - 50
\]
Subtracting the second from the first gives \(\frac{k}{4} > 50 \Rightarrow k > 200 \). Thus the smallest value of \(k \) is \(k = 201 \), which gives \(n = k + 1 = 201 + 1 = 202 \), [C].

21. This is just

\[
\begin{align*}
 f(i) &= 1 - \frac{i^2}{2!} + \frac{i^4}{4!} \\
 &= 1 + \frac{1}{2} + \frac{1}{24} \\
 &= \frac{37}{24}, [D].
\end{align*}
\]

22. Note that \(\text{cis} \theta_1 \text{cis} \theta_2 = \text{cis}(\theta_1 + \theta_2) \). Using this, we have

\[
\prod_{\theta=1}^{2013} \text{cis} \theta^\circ = \text{cis} 1^\circ \text{cis} 2^\circ \cdots \text{cis} 2013^\circ \\
= \text{cis} \left(\frac{2013(2014)}{2} \right) \\
= \text{cis} (1007 \cdot 2013)^\circ, [B].
\]

23. The plotted points form a spiral shape, composed of segments which we can treat as hypotenuses of right triangles for our purposes of calculating distance. Since the powers of \(i \) traverse the axes counterclockwise, each two set of consecutive points along with the origin form a right triangle. For example, \(z_1 = \sqrt{\binom{2}{2}} = i \), and

\[
\begin{align*}
 z_2 &= \sqrt{\binom{3}{2}} = -\sqrt{3}, \text{ giving } z_1 z_2 = \sqrt{1^2 + (\sqrt{3})^2} = 2. \text{ In general, we have }
 \\
 z_k z_{k+1} &= \sqrt{\frac{k+1}{2} + \frac{k+2}{2}} \\
 &= \sqrt{\frac{k(k+1)}{2} + \frac{(k+1)(k+2)}{2}} \\
 &= \sqrt{(k+1)^2} \\
 &= k+1.
\end{align*}
\]
Thus,
\[z_1z_2 + z_2z_3 + \cdots + z_{2012}z_{2013} = 2 + 3 + \cdots + 2013 \]
\[= \frac{2013 \cdot 2014}{2} - 1 \]
\[= 2027090. \]

Therefore, our answer is 2027090(mod100) ≡ 90, [C].

24. Note that \(A \) is a 60° counterclockwise rotation matrix. So every \(\frac{360°}{60°} = 6 \) times we apply it, we simply return to the same vector. This means that

\[A^{37}z = A^{6(6)+1}z = Az \]
\[= \begin{pmatrix} 1 & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 \\ 4i \end{pmatrix} \]
\[= \frac{1}{2} \begin{pmatrix} 3 - 4i\sqrt{3} \\ 3\sqrt{3} + 4i \end{pmatrix}, \quad [B]. \]

25. We have
\[\sum_{n=1}^{k} n(n!) = \sum_{n=1}^{k} (n+1-1)(n!) \]
\[= \sum_{n=1}^{k} [(n+1)(n!) - n!] \]
\[= \sum_{n=1}^{k} [(n+1)! - n!] \]
\[= [(k+1)!(k!)+[k!+(k-1)!]+\cdots+[2!-1!]] \]
\[= (k+1)! - 1 \]

Thus, the sum becomes
\[\sum_{n=1}^{k} n \cdot n! + 1 = (k+1)! - 1 + 1 = (k+1)!, \]
and we have
\[\sum_{k=0}^{\infty} \frac{i^k}{(k+1)!} = \frac{1}{i} \sum_{k=0}^{\infty} \frac{i^{k+1}}{(k+1)!} \]
\[= \frac{1}{i} \left(\sum_{n=1}^{\infty} \frac{i^n}{n!} \right) \]
\[= -i(e^i - 1) \]
\[= -ie^i + i, \text{ C.} \]

26. We can write \(f(x) \) as
\[f(x) = x^{2013} + x^{2012} + \cdots + x + 1 \]
\[= x^{2012}(x+1) + x^{2010}(x+1) + \cdots + x^2(x+1) + (x+1) \]
\[= (x+1)(x^{2012} + x^{2010} + \cdots + x^2 + 1) \]
\[= (x+1)(x^{2010}(x^2 + 1) + \cdots + (x^2 + 1)) \]
\[= (x+1)(x^2 + 1)(x^{2010} + x^{2008} + \cdots + 1). \]

Thus, we know that \(f(x) \) has \(-1, i\), and \(-i\) as roots. Since the powers of \(i \) cycle, we are only worried about the powers of \(i \) that come out to 1, or every fourth power. Note that \(R(1) = f(1) = 2014 \), by the Remainder theorem. Since we begin at \(k = 0 \), our answer is
\[2014 \left(\frac{2013}{4} + 1 \right) \equiv 1015056 \equiv 56, \text{ D.} \]

27. The function in this problem is similar to the function given in Problem 26. We can write \(f_n(x) \) as
\[f_n(x) = \sum_{j=0}^{2^n-1} x^j \]
\[= \sum_{j=0}^{2^n-1} \left(x^{2^j} + x^{2^{j+1}} \right) \]
\[= (1 + x) \sum_{j=0}^{2^n-1} x^{2^j} \]
\[= (1 + x) \sum_{j=0}^{2^n-1} \left(x^{4^j} + x^{4^{j+1}} \right) \]
\[= (1 + x)(1 + x^2) \sum_{j=0}^{2^n-1} x^{4^j} \]
\[\vdots \]
\[= (1 + x)(1 + x^2) \cdots \left(1 + x^{2^{n-1}} \right). \]
Solving $x^{2^{n-1}} = -1$ gives us $x = \text{cis}\left(\frac{\pi}{2^{n-1}} + \frac{\pi k}{2^{n-2}}\right)$, where $\psi_n = \left\{\frac{\pi}{2^{n-1}}, \frac{3\pi}{2^{n-1}}, \ldots, \frac{(2^{n-1}-1)\pi}{2^{n-1}}\right\}$. Note that the entire set ψ is a union of all ψ_i. The sum for a given ψ_n is

$$\frac{\pi}{2^{n-1}} \left(1 + 3 + \cdots + (2^{n-1} - 1)\right) = \frac{\pi}{2^{n-1}} \left(2^{n-2}\right)^2 = \frac{2^{2n-4}}{2^{n-1}} \pi = 2^n \left(\frac{\pi}{8}\right).$$

Thus the entire sum (while accommodating for $x+1 = 0 \Rightarrow x = \text{cis}(\pi)$) is

$$\pi + \frac{\pi}{8} \left(2^1 + 2^2 + \cdots + 2^n\right) = \pi + \frac{\pi}{8} \left(\frac{2^n - 1}{1}\right) = \pi + \frac{\pi}{4} \left(2^n - 1\right).$$

Finally, we must find n such that

$$\pi + \frac{\pi}{4} \left(2^n - 1\right) > 2013 \pi \Rightarrow 2^n - 1 > 8048 \Rightarrow n > \log_2 8049.$$

We can easily verify that the smallest such n is 12, [C].

28. We know that $|z|^2 = m^2 + 9n^2$. Consider this modulo 8. Since the quadratic residues mod 8 are 0, 1, and 4, the possible values of $|z|^2 \pmod{8}$ are

$$\begin{align*}
0 + 0 & \equiv 0 \pmod{8} \\
0 + 1 & \equiv 1 \pmod{8} \\
0 + 4 & \equiv 4 \pmod{8} \\
1 + 1 & \equiv 2 \pmod{8} \\
1 + 4 & \equiv 5 \pmod{8}
\end{align*}$$

The answer choices, mod 8, are
2010 \equiv 2 \pmod{8} \\
2011 \equiv 3 \pmod{8} \\
2012 \equiv 4 \pmod{8} \\
2013 \equiv 5 \pmod{8} \\

Thus our answer is 2011, B.

29. Our intuition for a new set of axes is based on the fact that the Eisenstein integers have an argument of 60°. Through some playing around, we can find the set of axes as shown below:

As we can see, the plotted points form an equilateral triangle with a side length of 3. Thus, the area is \(\frac{\sqrt{3}}{4} \cdot 9 \sqrt{3} = \frac{9 \sqrt{3}}{4} \), C.

30. We have

\[
z = a + b\omega = a + b \left(\frac{1}{2}(-1 + i \sqrt{3}) \right) = \left(a - \frac{b}{2} \right) + i \left(\frac{b \sqrt{3}}{2} \right).
\]

Thus,
\[|z| = \sqrt{\left(a - \frac{b}{2} \right)^2 + \left(\frac{b\sqrt{3}}{2} \right)^2} \]

\[= \sqrt{a^2 - ab + \frac{b^2}{4} + \frac{3b^2}{4}} \]

\[= \sqrt{a^2 - ab + b^2} \]

\[= \sqrt{(a - b)^2 + ab}, \quad \text{(C)} \]