Hustle
Test #841
Algebra
Find the distance between \((-6, 4)\) and \((3, -2)\).

Answer: ________________________

Round 1 2 3 4 5

Answer: ________________________

Round 1 2 3 4 5
Write the range of $y = 2 - \sqrt{(x+4)(x-7)}$ in interval notation.

Answer: ______________________

Round 1 2 3 4 5

Write the range of $y = 2 - \sqrt{(x+4)(x-7)}$ in interval notation.

Answer: ______________________

Round 1 2 3 4 5
Find \(h(9) \) if \(h(x) = f(g(x)) \), using \(f(x) = \sqrt{x+1} \) and \(g(x) = 1 + x^2 \).

Answer: ___________________

Round 1 2 3 4 5

Find \(h(9) \) if \(h(x) = f(g(x)) \), using \(f(x) = \sqrt{x+1} \) and \(g(x) = 1 + x^2 \).

Answer: ___________________

Round 1 2 3 4 5
If y varies directly as t^2 and inversely as x^3 and r, find y when $x = 3, t = 4$, and $r = 8$ if $y = 1$ when $x = 2, t = 3$, and $r = 4$. Express your answer as a common fraction.

<table>
<thead>
<tr>
<th>Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If y varies directly as t^2 and inversely as x^3 and r, find y when $x = 3, t = 4$, and $r = 8$ if $y = 1$ when $x = 2, t = 3$, and $r = 4$. Express your answer as a common fraction.

<table>
<thead>
<tr>
<th>Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find all complex values of x for which $f(x) = 0$ in the function given by

$$f(x) = \frac{x+1}{x-1} - \frac{x+2}{2x+1}.$$

Answer:

Round 1 2 3 4 5

Find all complex values of x for which $f(x) = 0$ in the function given by

$$f(x) = \frac{x+1}{x-1} - \frac{x+2}{2x+1}.$$

Answer:

Round 1 2 3 4 5

Find all complex values of x for which $f(x) = 0$ in the function given by

$$f(x) = \frac{x+1}{x-1} - \frac{x+2}{2x+1}.$$

Answer:

Round 1 2 3 4 5
What is the maximum area possible for a triangle the sum of whose base b and height h (which is measured from the triangle vertex opposite the base with length b) is 10?

Answer: ________________

Round 1 2 3 4 5

What is the maximum area possible for a triangle the sum of whose base b and height h (which is measured from the triangle vertex opposite the base with length b) is 10?

Answer: ________________

Round 1 2 3 4 5
Write the equations of all the vertical asymptotes of
\[y = \frac{x^3 - 2x^2 - 29x + 30}{x^3 - 19x + 30}. \]

Answer: ________________

Round 1 2 3 4 5

Write the equations of all the vertical asymptotes of
\[y = \frac{x^3 - 2x^2 - 29x + 30}{x^3 - 19x + 30}. \]

Answer: ________________

Round 1 2 3 4 5
Find the area of the ellipse generated by $x^2 + 4y^2 - 6x - 7 = 0$.

Answer: ____________________

Round 1 2 3 4 5

Find the area of the ellipse generated by $x^2 + 4y^2 - 6x - 7 = 0$.

Answer: ____________________

Round 1 2 3 4 5
Find the asymptote of the hyperbola $25x^2 - 16y^2 + 100x + 96y = 444$ that has positive slope. Write your answer in slope-intercept form.

Answer: ________________________

Round 1 2 3 4 5

Find the asymptote of the hyperbola $25x^2 - 16y^2 + 100x + 96y = 444$ that has positive slope. Write your answer in slope-intercept form.

Answer: ________________________

Round 1 2 3 4 5
Find the number of digits, when evaluated, in 2^{2013} given that $\log 2 \approx 0.3010$.

Answer: ________________

Round 1 2 3 4 5

Find the number of digits, when evaluated, in 2^{2013} given that $\log 2 \approx 0.3010$.

Answer: ________________

Round 1 2 3 4 5
Solve for x.

$$\frac{1}{3} \log_{20} (2x - 1) = \log_{20} 11 - 2 \log_{20} \sqrt[3]{2x - 1} + \log_{5} \left(\log_{7} 7 \right)$$

Answer: ________________________

Round 1 2 3 4 5

Solve for x.

$$\frac{1}{3} \log_{20} (2x - 1) = \log_{20} 11 - 2 \log_{20} \sqrt[3]{2x - 1} + \log_{5} \left(\log_{7} 7 \right)$$

Answer: ________________________

Round 1 2 3 4 5
Find the value of $x + y$ for \[
\begin{align*}
\frac{3}{x-2} + \frac{2}{y+1} &= 1 \\
\frac{4}{x-2} - \frac{1}{y+1} &= 5 \quad .
\end{align*}
\]

Answer: ________________

Round 1 2 3 4 5

Find the value of $x + y$ for \[
\begin{align*}
\frac{3}{x-2} + \frac{2}{y+1} &= 1 \\
\frac{4}{x-2} - \frac{1}{y+1} &= 5 \quad .
\end{align*}
\]

Answer: ________________

Round 1 2 3 4 5
Find the product of the two numbers whose sum is 15 and whose positive difference is 27.

Answer: ________________

Round 1 2 3 4 5

Find the product of the two numbers whose sum is 15 and whose positive difference is 27.

Answer: ________________

Round 1 2 3 4 5
Two pumps working together can empty an oil tanker in 12 hours. If both pumps run for 9 hours and then one breaks down, it takes the remaining pump 3.75 hours to finish the job. How many hours would it take the slower pump working alone to empty a full tanker? Assume that each of the pumps work at constant rates.

Answer: _________________
Round 1 2 3 4 5

Answer: _________________
Round 1 2 3 4 5

Two pumps working together can empty an oil tanker in 12 hours. If both pumps run for 9 hours and then one breaks down, it takes the remaining pump 3.75 hours to finish the job. How many hours would it take the slower pump working alone to empty a full tanker? Assume that each of the pumps work at constant rates.

Answer: _________________
Round 1 2 3 4 5

Answer: _________________
Round 1 2 3 4 5
Find the point in the first quadrant that satisfies \(\begin{cases} 2x^2 + 3y^2 = 7 \\ x^2 - y^2 = 1 \end{cases} \). Express your answer as an ordered pair \((x, y)\).

Answer: ________________________

Round 1 2 3 4 5

Answer: ________________________

Round 1 2 3 4 5

Find the point in the first quadrant that satisfies \(\begin{cases} 2x^2 + 3y^2 = 7 \\ x^2 - y^2 = 1 \end{cases} \). Express your answer as an ordered pair \((x, y)\).

Answer: ________________________

Round 1 2 3 4 5
An archaeologist found some organic artifacts which contained 25% of their original carbon-14. If the half-life of carbon-14 is 5700 years, how old (in years) are these relics? Use the formula

\[C = C_0 \left(2^{t/5700} \right) \]

Answer: ________________

Round 1 2 3 4 5
<table>
<thead>
<tr>
<th>Evaluate:</th>
<th>2 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5 0 2</td>
</tr>
<tr>
<td></td>
<td>-1 7 -3</td>
</tr>
</tbody>
</table>

Evaluate: 2 3 0

Evaluate: -5 0 2

Evaluate: -1 7 -3

Answer: ______________

Round 1 2 3 4 5

Answer: ______________

Round 1 2 3 4 5

Answer: ______________

Round 1 2 3 4 5

Answer: ______________

Round 1 2 3 4 5
The determinant of a 2×2 matrix A is 12. Find the determinant of $3A$.

Answer: ________________________

Round 1 2 3 4 5

The determinant of a 2×2 matrix A is 12. Find the determinant of $3A$.

Answer: ________________________

Round 1 2 3 4 5
Find the conjugate of z if $z = \frac{7-2i}{3+5i}$. Write your answer in $a+bi$ form, where a and b are real numbers.

Answer: ________________________

Round 1 2 3 4 5

Find the conjugate of z if $z = \frac{7-2i}{3+5i}$. Write your answer in $a+bi$ form, where a and b are real numbers.

Answer: ________________________

Round 1 2 3 4 5
Evaluate $|8 - 6i|$, given that $i = \sqrt{-1}$.

Answer: ______________

Round 1 2 3 4 5

Evaluate $|8 - 6i|$, given that $i = \sqrt{-1}$.

Answer: ______________

Round 1 2 3 4 5
Find the remainder when
$7x^5 - 5x^4 + 12x^3 - 17x^2 + 22x + 10$ is divided by
$7x + 2$

Answer: ________________________

Round 1 2 3 4 5

Find the remainder when
$7x^5 - 5x^4 + 12x^3 - 17x^2 + 22x + 10$ is divided by
$7x + 2$

Answer: ________________________

Round 1 2 3 4 5
Find the remaining two roots of
\[3x^3 + 17x^2 + 16x + 4 = 0\] given that \(-\frac{2}{3}\) is a root.

Answer: ________________________

Round 1 2 3 4 5

Find the remaining two roots of
\[3x^3 + 17x^2 + 16x + 4 = 0\] given that \(-\frac{2}{3}\) is a root.

Answer: ________________________

Round 1 2 3 4 5
Compute \(\sum_{k=1}^{6} (-1)^{k+1} (k+1)k \).

Answer:

Round 1 2 3 4 5

Compute \(\sum_{k=1}^{6} (-1)^{k+1} (k+1)k \).

Answer:

Round 1 2 3 4 5

Compute \(\sum_{k=1}^{6} (-1)^{k+1} (k+1)k \).

Answer:

Round 1 2 3 4 5
Find the sum of all the odd integers between 100 and 500.

Answer: ________________________

Round 1 2 3 4 5

Find the sum of all the odd integers between 100 and 500.

Answer: ________________________

Round 1 2 3 4 5
Find the middle term in the expansion of \((2x - y)^4\), when the terms are written in decreasing powers of \(x\).

Answer: ________________________ Answer: ________________________

Round 1 2 3 4 5 Round 1 2 3 4 5