1. Let the side parallel to the river have length x and sides perpendicular to the river have length y. Then we have the following: 
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. We want to maximize xy so we will substitute so that . This is a downward facing parabola that will have a maximum at its vertex i.e. at 
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. When x =125 we have that y = 75 so that the maximum area is 125*75=9375. C
2. We can convert both numbers to binary and then add down. So we have 
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. C
3. The probability for a specific rank is 
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. A
4. Note that this sum exactly follows the identity 
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. C
5. The key here is to use de Moivre’s Theorem so that we have 
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. Expanding the left hand side and taking the real part gives the answer. Thus we have 
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. D
6. Notice the symmetry of the sums. Evaluating the product of the first two terms can quickly be done using the difference of squares, i.e. 
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5 + 6 + 7( ) 5 + 6 − 7( ) = 5 + 6( )2 − 7( ) = 5 + 6 + 2 30 − 7 = 4 + 2 30










5

+

6

+

7

( )

5

+

6

-

7

( )

=

5

+

6

( )

2

-

7

( )

=

5

+

6

+

2 30

-

7

=

4

+

2 30


Similarly the product of the last two terms gives 
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7. We have the following system 
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. C
8. The line segment rotated around forms a cone with radius 5 and height 5. The surface area of a cone is 
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 is the slant height. Further, the slant height is such that 
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 is the height. Thus we have that the surface area is 
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9. Let x = Jim’s rate and y = Mike’s rate. Then 
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. Hence it will take 96 hours for Mike to write the test himself. C
10. Evaluating at x = 3 gives ‘zero/zero’. To handle this we will multiply by the conjugate of the numerator so that we have 
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. C
11. This situation is best represented by the following equation:
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 where x represents the number of bags at 8% solution. Solving this gives x=24. B
12. We are told the limit exists and so we can say 
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. Further, since the limit exists we will have equality of limits such that 
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. Solving this equation yields 
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 but since every term of the sequence is positive, the limit must be as well. Our answer is then 
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13. The idea here is to see that the expression is similar to the sine of the sum of two angles. Namely we will have 
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. Clearly this is impossible so instead we will scale down by a constant A so that 
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14. We begin by counting words of length 1: M, A, T, H and S for a total of 5. Next we count two letter words as 
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 words. Remember that order matters so we have under counted by a factor of 2. Thus there are actually 20 words of length two. For length three words we have 
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. Here we have undercounted by a factor of 
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 so there are actually 60 words of length three. Likewise words of length four are counted by 
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 so we in fact have 120 words of length 4. Finally words of length 5 we have 
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 so there are 120 words of length five. We must include the empty word, so there is 1 word of length zero. Thus there are 
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. B
15. We will use the formula 
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16. The first equation yields 
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17. We can evaluate using minors as follows 
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B
18.  Clearly the only value on the interval such that this holds is B. Standard result from Euler’s identity. 
19. If the minute hand goes twelve times faster than the hour hand, then there will be 11 meetings during every 12-hour period. Thus taking the eleventh part of 12 hours, we see that the hands will meet every 65  and 
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20. The inverse of 
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21. This is an application of the law of cosines for triangles. First we will find the angle between the vectors as follows: 
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22. We have the following system: 
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23. In general the number of integers between A and B that are divisible by C is 
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. To determine the number of integers divisible by 2 we compute 
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. Similarly the number of integers divisible by 3 is 
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. If we add these two numbers we will get the total divisible by 2 or 3. However, since any number divisible by 6 will get counted in both categories we have over counted once by all integers in the range divisible by 6. There are 
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 integers between 15 and 12303 divisible by 2 or 3. There are 12303-15+1=12289 integers in the range, so the probability is 
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24. We are interested in both horizontal and vertical asymptotes. Clearly vertical asymptotes will occur when the denominator is zero, i.e. when 
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25. We evaluate 
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from which we count 3 sign changes.  B
26. We model exponential decay so that 
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. Dividing the first by the second gives 
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. We use this to determine the starting mass: 
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. Finally to determine the mass after 48 hours we evaluate 
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27. We can use a counting argument to determine the binomial coefficients. In the expansion we are looking for terms that have one ‘x’, one ‘y’, and four ‘z’. As such we can first choose the 2 ‘x’ from the five factors, in 
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 ways. We can choose two ‘z’ from the remaining three factors in exactly 
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 ways. The remaining factor will give us our ‘y’ in one way.  Thus the term will be 
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28. We let 
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29. If 
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30.  We note that ln2 is less than 1 in absolute value so that geometric series converges. Its sum is given by 
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