For all questions, answer choice "E) NOTA" means none of the above answers are correct.

1. Solve:
$$\begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -2 & 1 \end{bmatrix}$$
.
A) $\begin{bmatrix} 0 & 3 \\ 2 & -4 \end{bmatrix}$ B) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 3 \\ -10 & 4 \end{bmatrix}$ D) $\begin{bmatrix} 0 & 1 \\ -2 & 4 \end{bmatrix}$ E) NOTA

2. Find an equation of the plane P in \mathbb{R}^3 that passes through (1,2,3) and is normal to <2,-4,3>. Use the form Ax + By + Cz = k, where A, B, C are relatively prime integers with A > 0. Find k.

A) 1 B) 3 C) 2 D) -3 E) NOTA

3. Generalize the previous problem to n dimensions. A hyperplane lies in \mathbb{R}^n which passes through P = (2,2,2,...) and is normal to $u = \langle 1, \frac{1}{2!}, \frac{1}{3!}, \frac{1}{4!}, \frac{1}{5!} \dots \rangle$. Use the form $A_1x_1 + A_2x_2 + A_3x_3 \dots = k$, where $A_1 = 1$. Find In(k).

B) $2 - \ln(2)$ C) $\ln(e-1) + \ln(2)$ A) 2ln(e-1) D) ln(2) E) NOTA

4. Let the complex number z = a + bi, where a and b are real, positive numbers. Let \overline{z} be the complex conjugate of z. Plotting the two on the Argand plane, what is the smaller angle between z and \overline{z} ?

A) $\tan^{-1}(\frac{b}{a})$ B) $2 \tan^{-1}(\frac{b}{a})$ C) $2 \cos^{-1}(\frac{b}{a})$ D) $\sin^{-1}(\frac{b}{a})$ E) NOTA

5. v = <1,-2,5> is a linear combination of u_1 = <1,1,1>, u_2 = <1,2,3>, u_3 = <2,-1,1>, which can be written in the form $au_1 + bu_2 + cu_3 = v$. Find $\frac{a}{bc}$.

A) 1 B) 2 C) 0 D) -1

6. In the figure, u_p is the projection of the vector u onto v. Note that the magnitude of u_p is determined by θ , the angle between the vectors u and v, but its direction is determined by v. If $u = \langle 1, -3, 4 \rangle$ and $v = \langle 3, 4, 7 \rangle$, find the projection of u onto v.

- A) $< \frac{57}{74}, \frac{38}{37}, \frac{133}{74} >$ B) $<\frac{19}{74}, \frac{18}{74}, \frac{19}{74} >$
- C) $< \frac{19}{74}, \frac{18}{74}, \frac{19}{74} >$ D) $< \frac{4}{74}, -\frac{12}{74}, \frac{28}{74} >$

E) NOTA

7. Which of the following is NOT true about traces? (Assume A, B are 2x2 matrices).

A)
$$tr(A) + tr(B) = tr(A+B)$$
B) $tr(A^T) = tr(A)$ C) $tr(9A) = 9tr(A)$ D) $tr(AB) = tr(BA)$ E) NOTA

8. Let A be a real, 2x2, rotation matrix. The determinant of A is always equal to what?

9. Find the determinant of M =
$$\begin{bmatrix} 5 & 4 & 2 & 1 \\ 2 & 3 & 1 & -2 \\ -5 & -2 & -3 & 9 \\ 1 & -2 & -1 & 4 \end{bmatrix}$$
.
A) 1 B) -38 C) 103 D) 0 E) NOTA

10. u_1 , u_2 , u_3 uniquely determine a tetrahedron. What is the volume of the tetrahedron if $u_1 = <1,1,0>$, $u_2 = <1,1,1>$, and $u_3 = <0,2,3>$?

A) 1/3 B) 2 C) 1/2 D) 4 E) NOTA

11. Which of the following sets contain vectors that determine a unique plane?

I. <0,0,1> , <1,0,0> II. <3,4,-1> , <8,0,16> III. <-2,5,3>, <4,-10,-6> IV. <0,0,0> , <1,5,3> A) I only B) II, III, IV C) III, IV D) I, II E) NOTA 12. Find the rank of the following matrix: $\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 10 & -6 & -5 \end{bmatrix}$. C) 3 D) 0 A) 1 B) 2 E) NOTA 13. Find the characteristic polynomial of M = $\begin{bmatrix} 7 & -1 \\ 6 & 2 \end{bmatrix}$. D) $p(t) = t^2 - 9t - 14$ A) $p(t) = t^2 - 9t + 14$ B) $p(t) = t^2-9t+20$ C) $p(t) = t^2+9t+20$ E) NOTA Alpha Matrices and Vectors

14. Find the distinct eigenvalues of M =
$$\begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$
.
A) 3 B) 4, 5, 2 C) 3, 5 D) 1, -1 E) NOTA

15. Given the system of equations, find xyz.

16. Find the trace	of the inverse of	the matrix M = $\begin{bmatrix} -11\\ -4\\ 6 \end{bmatrix}$	2 0 -1	$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$.	
A) 8	B) -12	C) -1/12		D) 10	E) NOTA

17. Which vector is not orthogonal to 2 others in the following:

A)
$$u_1 = <1, 1, 1>$$

 $u_2 = <1, -3, 2>$
 $u_3 = <5, -1, -4>$
 $u_4 = <3, -2, 1>$
A) u_1
B) u_2
C) u_3
D) u_4
E) NOTA

18. Solve for x, assuming the system has 1 unique solution for (x, y):

$$\sqrt{a}x - \sqrt{b}y = a^{5/2}$$
$$\sqrt{b}x + \sqrt{a}y = b^{5/2}$$

A) $a^3 + b^3$ B) $a^2 - ab + b^2$ C) a + b D) \sqrt{ab} E) NOTA

19. Find Aⁿ if n is a positive integer and A = $\begin{bmatrix} 1 & 1/2 \\ 2 & 1 \end{bmatrix}$.

A) 2 ⁿ⁻² A	B) 2 ⁿ A	C) 2 ⁿ⁻² A ²	D) 2 ⁿ A ²	E) NOTA
/	,	-	,	· ·

20. Vishal plays a math game with Fred. Fred randomly creates a 3x3 matrix of non-negative integers less than 10. If the matrix is symmetric, Vishal wins a dog. What is the probability that Vishal will fairly win the game?

A) 1/10 ⁶	B) 1/10000	C) 1/1000	D) 1/100	E) NOTA
, _,	-,-,	-,	-,-,	

- 21. Which of the following is perpendicular to 4i 5j + 2z?
 - A) 3i + 4j + 4zB) 3i - 4j + 4zC) -4i + 5 + 2zD) 5i - 4j - 2zE) NOTA
- 22. What is the trace of an n x n identity matrix?
 - A) n-1 B) n+1 C) n² D) n E) NOTA

23. Which of the following describes the matrix M =
$$\begin{bmatrix} 0 & 2 & -4 \\ -2 & 0 & 1 \\ 4 & -1 & 0 \end{bmatrix}$$
.

A) Symmetric B) Skew-symmetric C) Invertible D) Upper Triangular E) NOTA

- 24. Given that $A = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -4 \\ 1 & -2 \end{bmatrix}$, find $|\det(B^{-1}A^{-1})|$. A) -1/4 B) 1/4 C) 10 D) -10 E) NOTA
- 25. Find the rotation angle θ when the rotation matrix Q is given by Q = $\begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$. A) 210° B) 180° C) 120° D) 30° E) NOTA

26. Given two vectors a and b, $||a \times b|| = \sqrt{3}(a \cdot b)$. Given that the smaller angle between them is θ degrees, what is the sum of the digits of θ .

A) 0 B) 3 C) 6 D) 9 E) NOTA

$$27. \begin{bmatrix} 1 & -1 \\ 2 & 5 \\ -3 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 5 & 0 \\ 2 & -3 & 2 \\ -1 & 4 & 0 \end{bmatrix} = ?$$

$$A) \begin{bmatrix} -1 & 8 & -2 \\ 12 & -5 & 10 \\ -1 & -18 & 2 \\ 2 & 10 & 0 \end{bmatrix} \quad B) \begin{bmatrix} -1 & 4 & -2 \\ 0 & 3 & 1 \end{bmatrix} \quad C) \begin{bmatrix} -1 & 8 & 2 \\ 1 & 5 & -10 \\ 0 & 4 & 0 \end{bmatrix} \quad D) \begin{bmatrix} 1 & -2 & 6 \\ 2 & -5 & 7 \\ 0 & 0 & 1 \\ 1 & 4 & -4 \end{bmatrix} \quad E) \text{ NOTA}$$

28. Which of the following are eigenvectors of the matrix A = $\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$?

A)
$$\begin{bmatrix} 0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\0 \end{bmatrix}$ B) $\begin{bmatrix} 2\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\-1 \end{bmatrix}$ C) $\begin{bmatrix} 1/3\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\1/3 \end{bmatrix}$ D) $\begin{bmatrix} 1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1 \end{bmatrix}$ E) NOTA

29. For what value of k is the matrix given by M = $\begin{bmatrix} 2 & 2 & -1 \\ -4 & -7 & -4 \\ 0 & 5 & k-8 \end{bmatrix}$ singular?

A) 10 B) 18 C) 0 D) -2 E) NOTA

 $30. < 3, 5, -7 > \cdot < -4, 3, 2 > = ?$

A) 13 B) 4 C) -11 D) 3 E) NOTA