#1 Precalculus-Hustle **MAO** National Convention 2014

$$\frac{\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{2} - \frac{\pi}{6}\right)} =$$

#2 Precalculus-Hustle MAO National Convention 2014

$$\frac{2\tan\left(\frac{\pi}{8}\right)}{1+\tan^2\left(\frac{\pi}{8}\right)} =$$

Answer:____ Round: 1 2 3 4 5

#3 Precalculus-Hustle

MAO National Convention 2014 Evaluate: $(e^{\frac{i\pi}{3}} - e^{-\frac{i\pi}{3}})/4$

#4 Precalculus-Hustle MAO National Convention 2014

Evaluate: $\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right)^6$

#5 Precalculus-Hustle

MAO National Convention 2014

A hyperbola has the equation:

$$\frac{(x-4)^2}{64} - \frac{(y-2)^2}{36} = 1$$

The foci can be written as (-a,b), (c,d). Find the least common multiple of a,b,c,d.

Answer:_

Round: 1 2 3 4 5

#7 Precalculus-Hustle MAO National Convention 2014

In $\triangle ABC$, where a is the side length opposite $\angle A$, etc., a=6, b=10, $\angle C$ =2 tan⁻¹ $\sqrt{3}$. What is the length of c?

Answer:

Round: 1 2 3 4 5

#8 Precalculus-Hustle

#6 Precalculus-Hustle

area of this figure?

MAO National Convention 2014

Jack ties a string of length 10cm between 2 point like nails separated by 8cm. He pulls the

string taunt and traces a figure so that the length of the string from one nail, to Jack's pencil to the other nail is a constant 10cm. What is the

MAO National Convention 2014

What is the distance between any 2 of the 3rd roots of $\frac{\sqrt{3}}{2}\cos\left(\frac{\pi}{8}\right) + \frac{i}{2}\sin\left(\frac{\pi}{8}\right)$ in the complex plane?

Answer:_

Round: 1 2 3 4 5

#9 Precalculus-Hustle MAO National Convention 2014

The equation $x^2 + 2x + y^2 - 6y + 5 = 0$ can best be described by what type of conic section?

#10 Precalculus-Hustle MAO National Convention 2014 $\left(1-\sqrt{3}i\right)^{12}$

Answer:_____ Round: 1 2 3 4 5

Answer:_____ Round: 1 2 3 4 5

#11 Precalculus-Hustle MAO National Convention 2014

$$\lim_{x \to \infty} \frac{\sum_{n=3}^{n=10} \binom{n}{n-2} x^{n-1}}{\sum_{n=1}^{n=11} n! \ x^{10-n}} =$$

#12 Precalculus-Hustle

MAO National Convention 2014

Find the number of asymptotes in the equation

$$y = \frac{x^4 - 3x^3 - 23x^2 - 33x - 14}{x^3 + 6x^2 + 9x + 4}$$

Answer:___

Round: 1 2 3 4 5

#13 Precalculus-Hustle MAO National Convention 2014

Find the larger value of x which makes the following matrix singular:

$$\begin{bmatrix} 5 & 1 & 3 \\ 4 & 2 & x \\ 0 & x & -1 \end{bmatrix}$$

Answer:____ Round: 1 2 3 4 5

#14 Precalculus-Hustle MAO National Convention 2014

What is the magnitude of the cross product:

$$\langle 1,4,-4 \rangle \times \langle -2,3,2 \rangle$$

#15 Precalculus-Hustle MAO National Convention 2014

Six single-letter blocks spell COFFEE when lined up properly. Marshall, a not too smart chimp, plays with the blocks and lines them up in a row. What is the probability Marshall will make the blocks spell COFFEE?

Answer:_____ Round: 1 2 3 4 5

#16 Precalculus-Hustle MAO National Convention 2014

If vectors $\mathbf{a} = <1,0,3>$ and $\mathbf{b} = <-2,2,4>$, find:

$$\frac{\|a\|^2 - \|b\|^2}{\|a - b\|^2}$$

Answer:____ Round: 1 2 3 4 5

#17 Precalculus-Hustle	#18 Precalculus-Hustle
MAO National Convention 2014	MAO National Convention 2014
What is the period of the function $\sin^4(2x)$?	If $a_n = a_{n-1} + 6a_{n-2}$, and $a_0 = 0$, $a_1 = 5$,
	then a_n can also be written as the sum x^n +
	$y^n(-1)^{n+1}$, where x and y are positive, real
	numbers. What is the average of x and y?
Answer:	
Round: 1 2 3 4 5	
	Answer:
	Round: 1 2 3 4 5
#19 Precalculus-Hustle	#20 Precalculus-Hustle
MAO National Convention 2014	MAO National Convention 2014
	What is the eccentricity of the conic section:
MAO National Convention 2014 Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
	What is the eccentricity of the conic section:
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$	What is the eccentricity of the conic section:
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$ Answer:	What is the eccentricity of the conic section: $r = \frac{5}{8 + 2\cos(\theta)}$
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$ Answer:	What is the eccentricity of the conic section: $r = \frac{5}{8 + 2\cos(\theta)}$ Answer:
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$ Answer:	What is the eccentricity of the conic section: $r = \frac{5}{8 + 2\cos(\theta)}$
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$ Answer:	What is the eccentricity of the conic section: $r = \frac{5}{8 + 2\cos(\theta)}$ Answer:
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$ Answer:	What is the eccentricity of the conic section: $r = \frac{5}{8 + 2\cos(\theta)}$ Answer:
Simplify: $\frac{(3+2i)(-1+i)}{(5+i)(2i)}$ Answer:	What is the eccentricity of the conic section: $r = \frac{5}{8 + 2\cos(\theta)}$ Answer:

#21 Precalculus-Hustle MAO National Convention 2014

In the expansion of $(x + 3y)^7$, find the coefficient of the $x^a y^b$ term, where a and b are both prime numbers and a>b.

#22 Precalculus-Hustle MAO National Convention 2014

Find the area of the quadrilateral defined by the points: (-2,-2), (5,3), (3,-2), (-3,1).

Answer:____

Round: 1 2 3 4 5

#23 Precalculus-Hustle MAO National Convention 2014

Find y/x if

$$\frac{x}{3} + \frac{y}{4} = 0$$
$$\frac{x}{2} - \frac{y}{2} = 7$$

#24 Precalculus-Hustle MAO National Convention 2014Find tan(75°)

Answer:_______
Round: 1 2 3 4 5

#25 Precalculus-Hustle	
MAO National Convention 2014	
Find the product of the roots of $y=\sin(\frac{3x}{4})$	
between $-5\pi \le x \le 5\pi$	
Answer:	
Round: 1 2 3 4 5	