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Exercise 1. Factor

a3 + b3 + c3 − 3abc.

Solution: Consider the monic third degree polynomial whose zeros are
a, b, c:

x3 − (a + b + c)x2 + (ab + bc + ca)x− abc.

Then

a3 − (a + b + c)a2 + (ab + bc + ca)a− abc = 0

b3 − (a + b + c)b2 + (ab + bc + ca)b− abc = 0

c3 − (a + b + c)c2 + (ab + bc + ca)c− abc = 0.

Adding up these three equalities yields

a3 + b3 + c3 − (a + b + c)(a2 + b2 + c2) + (ab + bc + ca)(a + b + c)

−3abc = 0.

Hence

a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab− bc− ca). (1)

Another way to obtain the identity (1) is to consider the determinant

D =

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣
Expanding D we have

D = a3 + b3 + c3 − 3abc.

On the other hand, adding up all columns yields

D =

∣∣∣∣∣∣
a + b + c b c
a + b + c a b
a + b + c c a

∣∣∣∣∣∣ = (a + b + c)

∣∣∣∣∣∣
1 b c
1 a b
1 c a

∣∣∣∣∣∣
= (a + b + c)(a2 + b2 + c2 − ab− bc− ca).



Note that the expression

a2 + b2 + c2 − ab− bc− ca

can be also written as

1

2

[
(a− b)2 + (b− c)2 + (c− a)2

]
.

We obtain another version of the identity (1):

a3 + b3 + c3 − 3abc =
1

2
(a + b + c)

[
(a− b)2 + (b− c)2 + (c− a)2

]
. (2)

This form leads to a short proof of the AM-GM inequality for three
variables. Indeed, from (2) it is clear that if a, b, c are nonnegative, then
a3 + b3 + c3 ≥ 3abc. Now, if x, y, z are positive numbers, taking a = 3

√
x,

b = 3
√

y, c = 3
√

z yields

x + y + z

3
≥ 3
√

xyz,

with equality if and only if x = y = z.

Exercise 2. Find the minimum of 3x+y(3x−1 + 3y−1 − 1) over all pairs
(x, y) of real numbers.

Solution: Let f(x, y) = 3x+y(3x−1 + 3y−1 − 1). We have

3f(x, y) + 1 = 32x+y + 3x+2y + 1− 3 · 3x+y,

which is of the form a3 + b3 + c3 − 3abc, where a =
3
√

32x+y, b =
3
√

3x+2y, and
c = 1 are all positive real numbers. From (2) it follows that 3f(x, y) + 1 ≥ 0
for all x, y ∈ R, with equality if and only if x = y = 0. Hence the minimum
of f(x, y) is −1

3
.

The same conclusion follows directly from the AM-GM inequality, because

32x+y−1 + 3x+2y−1 + 3−1 ≥ 3
3
√

32x+y−1+x+2y−1−1 = 3x+y,

implying

32x+y−1 + 3x+2y−1 − 3x+y ≥ −1

3
.

Hence

3x+y(3x−1 + 3y−1 − 1) ≥ −1

3
,

for all real numbers x, y, with equality if and only if 2x+y−1 = x+2y−1 =
−1, i.e. x = y = 0.



Exercise 3. If a + b + c = 0, then a3 + b3 + c3 = 3abc.

Solution: Follows immediately from (2).

Problem 1. Simplify

(x + 2y − 3z)3 + (y + 2z − 3x)3 + (z + 2x− 3y)3.

Solution: Setting x + 2y − 3z = a, y + 2z − 3x = b, z + 2x− 3y = c, we
have a + b + c = 0, and from Exercise 2 it follows that a3 + b3 + c3 = 3abc.
Hence the given expression is equal to

3(x + 2y − 3z)(y + 2z − 3x)(z + 2x− 3y).

Problem 2. Let a, b, c be complex numbers. Prove that a2b + b2c + c2a =
ab2 + bc2 + ca2 if and only if a = b, orb = c, or c = a.

Solution: Because (a− b) + (b− c) + (c− a) = 0,

(a− b)3 + (b− c)3 + (c− a)3 = 3(a− b)(b− c)(c− a),

so assuming a2b + b2c + c2a = ab2 + bc2 + ca2 yields

3(a− b)(b− c)(c− a) = a3 − b3 + b3 − c3 + c3 − a3 − 3[(a2b + b2c + c2a)

−(ab2 + bc2 + ca2)] = 0.

Then a = b, or b = c, or c = a. The converse follows immediately.

The conclusion of the problem follows directly from

(a− b)(b− c)(c− a) = abc− (a2b + b2c + c2a) + (ab2 + bc2 + ca2)]− abc

= (ab2 + bc2 + ca2)− (a2b + b2c + c2a).

Problem 3. Let x, y, z be distinct real numbers. Prove that

3
√

x− y + 3
√

y − z + 3
√

z − x 6= 0.

Solution: Assume the contrary, and let 3
√

x− y = a, 3
√

y − z = b, 3
√

z − x =
c. Then a + b + c = 0, and, from Exercise 2, a3 + b3 + c3 = 3abc. This yields

0 = (x− y) + (y − z) + (z − x) = 3 3
√

x− y 3
√

y − z 3
√

z − x 6= 0,

a contradiction. The problem is solved.
Problem 4. Let r be a real number such that 3

√
r− 1

3√r
= 2. Find r3− 1

r3 .

(UWW Mathmeet, 2003)

Solution: With a = 3
√

r, b = − 1
3√r

, c = −2, we have again a + b + c = 0,

hence a3 + b3 + c3 = 3abc. This yields

r − 1

r
− 8 = 3 3

√
r

(
− 1

3
√

r

)
(−2),



or, equivalently,

r − 1

r
− 14 = 0.

By applying the result in Exercise 2 again, we get

r3 − 1

r3
− 2744 = 3r

(
−1

r

)
(−14),

or

r3 − 1

r3
= 2744 + 42 = 2786.

Problem 5. Show that if the numbers abc, bca, cab are divisible by n, then
so is a3 + b3 + c3 − 3abc.

Solution: We have seen that

a3 + b3 + c3 − 3abc =

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣ =

∣∣∣∣∣∣
100b + 10c + a b c
100a + 10b + c a b
100c + 10a + b c a

∣∣∣∣∣∣
=

∣∣∣∣∣∣
bca b c

abc a b

cab c a

∣∣∣∣∣∣ ,

and the conclusion follows.

Problem 6. The number of ordered pairs of integers (m, n) such that
mn ≥ 0 and m3 + 99mn + n3 = 333 is
a) 2 b) 3 c) 33 d) 35 e) 99.

(AHSME 1999)

Solution: Write the given relation as

m3 + n3 + (−33)3 − 3mn(−33) = 0.

From the identity (2) it follows that

(m + n− 33)
[
(m− n)2 + (m + 33)2 + (n + 33)2

]
= 0.

The equation m + n = 33, along with the condition mn ≥ 0, yields 34
solutions: (k, 33−k), k = 0, 1 . . . , 33. The second factor is equal to zero only
when m = n = −33, giving the 35th solution.


