Interesting Mathematical Problems to Ponder

Dr. Titu Andreescu
University of Texas at Dallas

Exercise 1. Factor

$$
a^{3}+b^{3}+c^{3}-3 a b c
$$

Solution: Consider the monic third degree polynomial whose zeros are a, b, c :

$$
x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c .
$$

Then

$$
\begin{aligned}
& a^{3}-(a+b+c) a^{2}+(a b+b c+c a) a-a b c=0 \\
& b^{3}-(a+b+c) b^{2}+(a b+b c+c a) b-a b c=0 \\
& c^{3}-(a+b+c) c^{2}+(a b+b c+c a) c-a b c=0 .
\end{aligned}
$$

Adding up these three equalities yields

$$
\begin{array}{r}
a^{3}+b^{3}+c^{3}-(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)+(a b+b c+c a)(a+b+c) \\
-3 a b c=0 .
\end{array}
$$

Hence

$$
\begin{equation*}
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) . \tag{1}
\end{equation*}
$$

Another way to obtain the identity (1) is to consider the determinant

$$
D=\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
$$

Expanding D we have

$$
D=a^{3}+b^{3}+c^{3}-3 a b c
$$

On the other hand, adding up all columns yields

$$
\begin{aligned}
D & =\left|\begin{array}{lll}
a+b+c & b & c \\
a+b+c & a & b \\
a+b+c & c & a
\end{array}\right|=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & a & b \\
1 & c & a
\end{array}\right| \\
& =(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) .
\end{aligned}
$$

Note that the expression

$$
a^{2}+b^{2}+c^{2}-a b-b c-c a
$$

can be also written as

$$
\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] .
$$

We obtain another version of the identity (1):

$$
\begin{equation*}
a^{3}+b^{3}+c^{3}-3 a b c=\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] . \tag{2}
\end{equation*}
$$

This form leads to a short proof of the AM-GM inequality for three variables. Indeed, from (2) it is clear that if a, b, c are nonnegative, then $a^{3}+b^{3}+c^{3} \geq 3 a b c$. Now, if x, y, z are positive numbers, taking $a=\sqrt[3]{x}$, $b=\sqrt[3]{y}, c=\sqrt[3]{z}$ yields

$$
\frac{x+y+z}{3} \geq \sqrt[3]{x y z}
$$

with equality if and only if $x=y=z$.
Exercise 2. Find the minimum of $3^{x+y}\left(3^{x-1}+3^{y-1}-1\right)$ over all pairs (x, y) of real numbers.

Solution: Let $f(x, y)=3^{x+y}\left(3^{x-1}+3^{y-1}-1\right)$. We have

$$
3 f(x, y)+1=3^{2 x+y}+3^{x+2 y}+1-3 \cdot 3^{x+y}
$$

which is of the form $a^{3}+b^{3}+c^{3}-3 a b c$, where $a=\sqrt[3]{3^{2 x+y}}, b=\sqrt[3]{3^{x+2 y}}$, and $c=1$ are all positive real numbers. From (2) it follows that $3 f(x, y)+1 \geq 0$ for all $x, y \in \mathbb{R}$, with equality if and only if $x=y=0$. Hence the minimum of $f(x, y)$ is $-\frac{1}{3}$.

The same conclusion follows directly from the AM-GM inequality, because

$$
3^{2 x+y-1}+3^{x+2 y-1}+3^{-1} \geq 3 \sqrt[3]{3^{2 x+y-1+x+2 y-1-1}}=3^{x+y}
$$

implying

$$
3^{2 x+y-1}+3^{x+2 y-1}-3^{x+y} \geq-\frac{1}{3}
$$

Hence

$$
3^{x+y}\left(3^{x-1}+3^{y-1}-1\right) \geq-\frac{1}{3}
$$

for all real numbers x, y, with equality if and only if $2 x+y-1=x+2 y-1=$ -1 , i.e. $x=y=0$.

Exercise 3. If $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$.
Solution: Follows immediately from (2).
Problem 1. Simplify

$$
(x+2 y-3 z)^{3}+(y+2 z-3 x)^{3}+(z+2 x-3 y)^{3} .
$$

Solution: Setting $x+2 y-3 z=a, y+2 z-3 x=b, z+2 x-3 y=c$, we have $a+b+c=0$, and from Exercise 2 it follows that $a^{3}+b^{3}+c^{3}=3 a b c$. Hence the given expression is equal to

$$
3(x+2 y-3 z)(y+2 z-3 x)(z+2 x-3 y)
$$

Problem 2. Let a, b, c be complex numbers. Prove that $a^{2} b+b^{2} c+c^{2} a=$ $a b^{2}+b c^{2}+c a^{2}$ if and only if $a=b$, orb $=c$, or $c=a$.

Solution: Because $(a-b)+(b-c)+(c-a)=0$,

$$
(a-b)^{3}+(b-c)^{3}+(c-a)^{3}=3(a-b)(b-c)(c-a),
$$

so assuming $a^{2} b+b^{2} c+c^{2} a=a b^{2}+b c^{2}+c a^{2}$ yields

$$
\begin{array}{r}
3(a-b)(b-c)(c-a)=a^{3}-b^{3}+b^{3}-c^{3}+c^{3}-a^{3}-3\left[\left(a^{2} b+b^{2} c+c^{2} a\right)\right. \\
\left.-\left(a b^{2}+b c^{2}+c a^{2}\right)\right]=0 .
\end{array}
$$

Then $a=b$, or $b=c$, or $c=a$. The converse follows immediately.
The conclusion of the problem follows directly from

$$
\begin{aligned}
(a-b)(b-c)(c-a) & \left.=a b c-\left(a^{2} b+b^{2} c+c^{2} a\right)+\left(a b^{2}+b c^{2}+c a^{2}\right)\right]-a b c \\
& =\left(a b^{2}+b c^{2}+c a^{2}\right)-\left(a^{2} b+b^{2} c+c^{2} a\right) .
\end{aligned}
$$

Problem 3. Let x, y, z be distinct real numbers. Prove that

$$
\sqrt[3]{x-y}+\sqrt[3]{y-z}+\sqrt[3]{z-x} \neq 0
$$

Solution: Assume the contrary, and let $\sqrt[3]{x-y}=a, \sqrt[3]{y-z}=b, \sqrt[3]{z-x}=$ c. Then $a+b+c=0$, and, from Exercise $2, a^{3}+b^{3}+c^{3}=3 a b c$. This yields

$$
0=(x-y)+(y-z)+(z-x)=3 \sqrt[3]{x-y} \sqrt[3]{y-z} \sqrt[3]{z-x} \neq 0
$$

a contradiction. The problem is solved.
Problem 4. Let r be a real number such that $\sqrt[3]{r}-\frac{1}{\sqrt[3]{r}}=2$. Find $r^{3}-\frac{1}{r^{3}}$.
(UWW Mathmeet, 2003)
Solution: With $a=\sqrt[3]{r}, b=-\frac{1}{\sqrt[3]{r}}, c=-2$, we have again $a+b+c=0$, hence $a^{3}+b^{3}+c^{3}=3 a b c$. This yields

$$
r-\frac{1}{r}-8=3 \sqrt[3]{r}\left(-\frac{1}{\sqrt[3]{r}}\right)(-2)
$$

or, equivalently,

$$
r-\frac{1}{r}-14=0
$$

By applying the result in Exercise 2 again, we get

$$
r^{3}-\frac{1}{r^{3}}-2744=3 r\left(-\frac{1}{r}\right)(-14)
$$

or

$$
r^{3}-\frac{1}{r^{3}}=2744+42=2786 .
$$

Problem 5. Show that if the numbers $\overline{a b c}, \overline{b c a}, \overline{c a b}$ are divisible by n, then so is $a^{3}+b^{3}+c^{3}-3 a b c$.

Solution: We have seen that

$$
\begin{aligned}
a^{3}+b^{3}+c^{3}-3 a b c & =\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|=\left|\begin{array}{lll}
100 b+10 c+a & b & c \\
100 a+10 b+c & a & b \\
100 c+10 a+b & c & a
\end{array}\right| \\
& =\left|\begin{array}{lll}
\overline{b c a} & b & c \\
\frac{a b c}{c a b} & a & b \\
c & c & a
\end{array}\right|,
\end{aligned}
$$

and the conclusion follows.
Problem 6. The number of ordered pairs of integers (m, n) such that $m n \geq 0$ and $m^{3}+99 m n+n^{3}=33^{3}$ is
a) 2
b) 3
c) 33
d) 35
e) 99 .
(AHSME 1999)
Solution: Write the given relation as

$$
m^{3}+n^{3}+(-33)^{3}-3 m n(-33)=0 .
$$

From the identity (2) it follows that

$$
(m+n-33)\left[(m-n)^{2}+(m+33)^{2}+(n+33)^{2}\right]=0 .
$$

The equation $m+n=33$, along with the condition $m n \geq 0$, yields 34 solutions: $(k, 33-k), k=0,1 \ldots, 33$. The second factor is equal to zero only when $m=n=-33$, giving the 35 th solution.

