Evaluate:

\[\cos 1° \cdot \cos 2° \cdot \cos 3° \cdot \ldots \cdot \cos 179° \]
#1 Alpha Ciphering
MAØ National Convention 2015

Solve for x:

$$|x - 2| - 5 \leq 2$$

Express your answer in interval notation.
Solve for the 2×2 matrix M:

$$M \begin{bmatrix} 5 & 11 \\ 3 & 3 \end{bmatrix} + 2M = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$$
Two of the six 6^{th} roots of $-352 + 936i$ lie in the first quadrant on the complex plane. One of them is $3 + i$, the other can be expressed as $a + bi$. Find $a + b$.
12 \cos 2x - 5 \sin 2x can be rewritten as
\[A \cos \left(Bx + \arcsin \left(\frac{c}{d} \right) \right) \]
for integers \(A, B, C, D, \)
where \(A, B > 0 \) and \(C, D \) relatively prime. Find the value of \(A + B + CD. \)
Find the area enclosed by the ellipse described by the polar graph

\[r = \frac{6}{2 + \cos \theta} \]
Point O is the center of a circle with radius 4. Point A lies somewhere outside the circle, with $OA = 14$. Find the geometric mean of the lengths of all line segments connecting A to a point on circle O.
Find the remainder when \(7^{2^3} \) is divided by 40.

Find the remainder when \(7^{2^3} \) is divided by 40.
Let A_n be the nth term in the Fibonacci-like sequence $1, 3, 4, 7, 11, 18,...$, where $A_1 = 1$, $A_2 = 3$, and $A_k = A_{k-1} + A_{k-2}$ for $k \geq 3$.

Let

\[S_n = \sum_{k=1}^{n} A_k \]

Find

\[S_{2015} - \sum_{k=1}^{2013} S_k \]
Find the product of the solutions of the equation:

$$4^{\ln x} - 6x \ln 2 + 8 = 0$$
A bag contains 5 coins. Four of the coins are fair, and the other is a coin with tails on both sides. Stephen draws a coin out of the bag at random, and flips it 3 times, with the coin coming up tails all 3 times. If the coin is flipped a fourth time, what is the probability it comes up tails on that fourth flip?
Let a, b, and c be the three roots of $f(x) = x^3 - 7x + 5$. Find the value of

$$\frac{1}{a + 2} + \frac{1}{b + 2} + \frac{1}{c + 2}$$
Find the domain of the function, written in interval notation:

\[f(x) = \sqrt{\ln(|x^2 - 1|)} \]