Note that choice E) NOTA stands for "None of the above" answers is correct

1. Let the function f(x) be continuous on [a, b] and differentiable on (a, b) have the property that f(a) = f(b). There exists a value c such that a < c < b that satisfies Rolle's theorem. Find f'(c).

- A)0
- B) $\frac{b-a}{2}$ C) $\frac{f(b)-f(a)}{2}$ D) $\frac{a+b}{2}$
- E) NOTA

2. Let $f(x) = x^2 + 3x + 4$, $g(x) = 3x^2$, and h(x) = f(g(x)). Find h'(2).

- A) 27
- B) 84
- C) 324
- D) 588
- E) NOTA

3. Evaluate

$$\int_{17}^{19} ((x+1)^2 + (x+1)) dx$$

- A) $\frac{2054}{3}$ B) $\frac{2282}{3}$ C) $\frac{2522}{3}$ D) $\frac{2169}{2}$

- E) NOTA

4. Find

$$\lim_{x \to \infty} \frac{3x^5 - 7x^4 + 3x^3 - x^7 + 2}{9x^5 - 4x^2 + x - 1}$$

- A) $-\frac{7}{\alpha}$

- B) $\frac{1}{3}$ C) $\frac{7}{9}$ D) $\frac{3}{4}$
- E) NOTA

5. The base of a solid R is bounded by the x-axis, x = 0, x = 5, and the parabola, $y = x^2$. Solid R is comprised of square cross-sections perpendicular to the x-axis such that their sides lie on the bounded region defined above, what is the volume of R?

- A) 125
- B) 625
- C) 3125
- D) 15625
- E) NOTA

6. Approximate $\sqrt{45}$ given that $\sqrt{49} = 7$ using differentials.

- A) $\frac{45}{7}$ B) $\frac{47}{7}$
- C)7
- D) $\frac{51}{7}$
- E) NOTA

7. Let s_n denote an infinite sequence such that

$$s_n = \left(\frac{(n+1)^{4036}}{2018^n}\right) \left(\frac{2018^{n+1}}{(n+2)^{4036}}\right)$$

Find the value to which s_n converges.

- A) $\frac{1}{2}$
- B) $\frac{1}{2018}$
- C) 2018
- D) Divergent
- E) NOTA

8. Evaluate

$$\int_0^{\frac{\pi}{2}} x^2 \sin x \, dx$$

- A) $-\pi 2$ B) 2π C) $\pi + 2$ D) $\pi 2$
- E) NOTA

9. Find g'(x) if

$$g(x) = \int_{3x^2}^{4x^3} \sin t^2 dt$$

- A) $12x^2 \sin x^2 6x \sin x^2$ B) $12x^2 \sin 9x^4 6x \sin 16x^6$
- C) $12x^2 \sin 16x^6 6x \sin 9x^4$ D) $6x \sin 16x^6 12x^2 \sin 9x^4$
- E) NOTA

- 10. How many of the following are convergent?

- I. $\sum_{j=0}^{\infty} \frac{3^j}{4^j + i^2}$ II. $\sum_{k=0}^{\infty} \frac{2^k}{k^2}$ III. $\sum_{n=0}^{\infty} (-1)^n sec^3(n)$ IV. $\sum_{x=0}^{\infty} \frac{(2x)!}{x^x}$

- A) 1
- B) 2
- C) 3
- D) 4
- E) NOTA

11. The limit

$$\lim_{a \to 1} \frac{a - a^{6/5}}{a^{1/4} - a^{10/9}}$$

can be expressed as $\frac{n}{m}$ where n and m are relatively prime positive integers. Find n + m.

- A) 191
- B) 641
- C) 209
- D) 241
- E) NOTA

12. Find $\frac{dy}{dx}$ if $x^3 - x \ln y = ye^x$.

A)
$$\frac{3x^2y - ylny - ye^x}{x + ye^x}$$
 B)
$$\frac{3x^2y - lny + y^2e^x}{x + ye^x}$$
 C)
$$\frac{3x^2y + y^2e^x}{x + xe^x}$$
 D)
$$\frac{3x^2y - ylny - y^2e^x}{x + ye^x}$$
 E) NOTA

13. Let $f(x) = x^{\sqrt{x}}$. f'(3) can be expressed as $3^{\sqrt{a}-b}(\frac{1}{2}ln(c)+d)$, where a,b,c, and d are positive rational numbers. Find 2a+4b+c-d.

A) 10 B) 11 C) 12 D) 13 E) NOTA

14. Tammy has two birds that exist in the Cartesian plane. One bird flies along the path defined by the function $a(x) = 3x^3 - x + 1$ while the other bird flies along the path defined by $b(x) = 2x^2 + 1$. Find the area of the region bounded by the birds' flight paths.

- A) $\frac{164}{81}$ B) $\frac{44}{27}$ C) $\frac{32}{81}$ D) $\frac{71}{162}$ E) NOTA
- 15. Find the value of

$$\int_{1}^{\frac{\sqrt{3}}{3}} \frac{2x^3 + 2x^2 + 3x + 1}{x^4 + x^3 + x^2 + x} dx$$

A)
$$\ln(3\sqrt{3} - 3) + \frac{\pi}{12}$$
 B) $\ln(3\sqrt{3} + 3) - \frac{\pi}{12}$

C)
$$\ln(\frac{\sqrt{3}}{6} + \frac{1}{6}) - \frac{\pi}{12}$$
 D) $\ln(\frac{\sqrt{3}}{6} - \frac{1}{6}) + \frac{\pi}{12}$ E) NOTA

16. Caleb is approximating the area under $f(x) = 3x^4 + 44x^3 - 12x^2 - 1440x + 40$ on the interval [0,1] using a left hand Riemann sum with four equal subintervals. Which of the following are true?

- I. f(x) is increasing on this interval
- II. f(x) is decreasing on this interval
- III. Caleb will over-approximate the value on this interval
- IV. Caleb will under-approximate the value on this interval
- A) I, III B) II, III C) I, IV D) II, IV E) NOTA

17. Find the interval of convergence of

$$\sum_{n=1}^{\infty} \frac{4x^n}{(n+4)!}$$

- A) (-1,1)
- B) (-1,1]
- C) (-4,4) D) (-4,4]
- E) NOTA
- 18. Use a second degree Taylor polynomial centered at x = 0 to estimate the value of

$$\int_0^4 \sqrt{x^2 + 4} \, dx$$

- A) 56/3
- B) 28/3
- C) 14/3
- D) 40/3
- E) NOTA
- 19. A stream is 20 yards wide throughout its entire length. Harry wants to build a path consisting of a road built only on land and a bridge built only over water from point A to point B which is 40 yards downstream on the other side of the stream as shown. It costs \$16 and \$20 to build one yard of road and bridge respectively. Find the length of bridge, in yards, that minimizes the cost of the entire path. 20 yds.

- A) $\frac{80}{3}$

- E) NOTA

20. Evaluate

$$\int \frac{1 + \cos^2(x)}{1 + \cos(2x)} dx$$

- A) $\frac{1}{4}sin(x) + cos(x) + x + C$
- B) sec(x)tan(x) + C
- C) $\frac{1}{2}ln|sin(x) cos(x)| + C$ D) $\frac{1}{2}tan(x) + \frac{1}{2}x + C$
- E) NOTA

- 21. Find $\frac{d^2y}{dx^2}$ at $t = 2\sqrt{2}$ if $y = tan^{-1}(t)$ and $x = \log(t)$.
- $A)\, \frac{{}^{-14\sqrt{2}(\ln 10)^2}}{{}^{81}} \qquad B)\, 20 \big(\ln 10\big) \qquad \qquad C)\, \frac{{}^{20\sqrt{2}(\ln 10)}}{{}^{81}} \qquad \quad D)\, \frac{{}^{8}(\ln 10)^2}{{}^{27}}$

- E) NOTA
- 22. The region R bounded by x = 1, x = 5, y = 2, and $y = \ln x + 5$ is rotated around the yaxis. Find the volume of this solid.
- A) $60\pi + 25\pi \ln 5$

B) $\frac{225}{2}\pi + 25\pi \ln 5$

C) $108\pi + 25\pi \ln 5$

D) $\frac{175}{2}\pi + 25\pi \ln 5$

- E) NOTA
- 23. The integral $\int_0^3 4e^{-x^2} dx$ can be expressed as which of the following?
- A) $12\sum_{n=0}^{\infty} \frac{(-1)^n 9^n}{n!(2n+1)}$

B) $4\sum_{n=0}^{\infty} \frac{(-1)^n 9^n}{n!}$

C) $3\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{n!(2n+1)}$

D) $36\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{n!}$

- E) NOTA
- 24. f(x) is an odd function. Let $\int_{-2}^{0} f(x)dx = -4$, $\int_{0}^{8} f(x)dx = 21$, and $\int_{0}^{-5} f(x)dx = 3$ Find $\int_2^5 f(x) dx$.
- A)-7
- B)-1
- C) 7
- D)14
- E) NOTA
- 25. Chris loves chicken noodle soup. He is filling a frustum (smaller radius on the bottom) at a rate of 12 cubic cm per second. If the frustum has a smaller radius of 10 cm, a larger radius of 25 cm, and a height of 15 cm, how fast is the radius of the surface of the soup changing, in cm per second, when the soup is 9 cm deep in the frustum?
- A) $\frac{3}{2\pi}$
- B) $\frac{1}{3\pi}$
- $C)\frac{2}{3\pi}$
- D) $\frac{1}{\pi}$
- E) NOTA

26. Find the area enclosed by the curve $f(x) = x^2 + x + 1 + \frac{1}{x} + \frac{1}{x^2}$ and g(x) = -2 on the interval (-8, -2)

A)
$$\frac{1155}{8}$$
 - 2 ln 4

B)
$$\frac{1251}{8}$$
 - $\ln 4$

$$C)\frac{1203}{8} - \ln 4$$

A)
$$\frac{1155}{8}$$
 - 2 ln 4 B) $\frac{1251}{8}$ - ln 4 C) $\frac{1203}{8}$ - ln 4 D) $\frac{1107}{8}$ - 2 ln 4

27. Find the arclength of $r = \theta$ from 0 to $\sqrt{3}$ radians.

A)
$$\frac{1}{2} (\frac{3\sqrt{3}}{2} + \ln 2)$$

B)
$$2 + \ln 2$$

E) NOTA

C)
$$\frac{1}{2}(2\sqrt{3} + \ln(2 + \sqrt{3}))$$

D)
$$\frac{3}{4}(1 - \ln(2 + \sqrt{3}))$$

28. Find the value of

$$\int_0^1 \frac{\ln(x+1)}{x} dx$$

A)
$$\frac{\pi^2}{8}$$

A)
$$\frac{\pi^2}{8}$$
 B) $\frac{\pi^2}{8}$ C) $\frac{\pi^2}{12}$ D) $\frac{\pi^2}{24}$

C)
$$\frac{\pi^2}{12}$$

D)
$$\frac{\pi^2}{24}$$

29. Squanchy the ferocious alien feline has a special potion that, when ingested, increases his size at a rate (in ft³ per second) equal to four times his size in ft³. He drinks the potion and begins growing. However, to make sure that he doesn't grow too fast, Squanchy drinks a second potion that decreases his size at a rate equal to 8 times the square of his size at the point five seconds after he drinks the first potion. How large is he in ft³ 10 seconds after ingesting the first potion if he's initially 3 ft³?

A)
$$\frac{3e^{200}}{6e^{200}-6e^{50}+1}$$
 B) $\frac{3e^{100}}{6e^{100}-6e^{20}+1}$ C) $\frac{3e^{100}}{6e^{100}-6e^{25}+1}$ D) $\frac{3e^{50}}{6e^{50}-6e^{25}+1}$ E) NOTA

B)
$$\frac{3e^{100}}{6e^{100} - 6e^{20} + 1}$$

$$C)\frac{3e^{100}}{6e^{100}-6e^{25}+1}$$

$$D)\frac{3e^{50}}{6e^{50}-6e^{25}+1}$$

30. Prince Nebulon has assigned you a task. Evaluate

$$\int_0^1 \frac{3x+4}{x^2+3x+2} \, \mathrm{d} x$$

B)
$$\ln \frac{9}{8}$$
 C) $\ln 3$ D) $\ln \frac{9}{2}$

D)
$$ln \frac{9}{2}$$