Complex Numbers (Solution Keys)

1. What is $\text{Im}(z)$, the imaginary part of z, if $z - \bar{z} = 10i$?
 (A) 5 (B) -5 (C) 10 (D) -10 (E) NOTA

 Solution: $z - \bar{z} = 2\text{Im}(z)i = 10i$, so $\text{Im}(z) = 5$.
 Answer: (A)

2. Two complex numbers $z_1 = 5 + 7i$ and $z_2 = -1 + 4i$ are plotted on the complex plane. Find the complex number that divides the line segment $\overline{z_1z_2}$ by 1:2 ratio.
 (A) $2 + \frac{11}{2}i$ (B) $2 + 5i$ (C) $3 + 6i$ (D) $1 + 6i$ (E) NOTA

 Solution: The complex number z dividing the line segment z_1z_2 is

 $z = \frac{2}{3}z_1 + \frac{1}{3}z_2 = \frac{2}{3}(5 + 7i) + \frac{1}{3}(-1 + 4i) = 3 + 6i$.
 Answer: (C)

3. Let z, w be two complex numbers with $|z| = 2$ and $|w - 6 + 8i| = 5$. What is the smallest possible value of $|z - w|$?
 (A) 3 (B) 5 (C) 10 (D) 17 (E) NOTA

 Solution: The distance between the centers of two circles in the complex plane is 10, so the shortest distance from one circle to the other is $10 - 2 - 5 = 3$.
 Answer: (A)

4. Let z be a complex number with $|z| = 10$. Which of the following is equal to $\frac{z}{25}$?
 (A) $\frac{4}{z}$ (B) $\frac{z}{4}$ (C) $4z$ (D) $\frac{1}{4z}$ (E) NOTA

 Solution: $z\bar{z} = 100$, so $\frac{z}{25} = \frac{4}{z}$.
 Answer: (A)

5. If $z = 1 - i$ and $w = \sqrt{3} + i$, what is the argument of $\frac{w}{z}$?
 (A) $\frac{\pi}{12}$ (B) $\frac{5\pi}{12}$ (C) $\frac{7\pi}{12}$ (D) $\frac{11\pi}{12}$ (E) NOTA

 Solution: $\arg(z) = -\pi/4$, $\arg(w) = \pi/6$, $\arg\left(\frac{w}{z}\right) = \arg(w) - \arg(z) = \frac{5\pi}{12}$
 Answer: (B)

6. Simplify: $(-1 + i)^{10}$
 (A) 32 (B) -32 (C) 32i (D) -32i (E) NOTA

 Solution: $(-1 + i)^{10} = (\sqrt{2})^{10}\left(\cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4}\right)^{10} = 32\left(\cos\frac{30\pi}{4} + i \sin\frac{30\pi}{4}\right) = 32(-i)$
 Answer: (D)
7. Let \(z = a + bi \) be the complex number obtained by rotating \(2 + 4i \) by 135°. What is \(ab \)?
 (A) 6 (B) -6 (C) 4 (D) -4 (E) NOTA

 Solution:
 \[
 (2 + 4i) \text{Cis}(135°) = (2 + 4i) \left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} \right) = (1 + 2i)(-\sqrt{2} + i\sqrt{2}) = \sqrt{2}(-3 - i)
 \]
 Answer: (A)

8. Simplify: \(\frac{10i}{(1-i)(2-i)(3-i)} \)
 (A) -i (B) i (C) -1 (D) 1 (E) NOTA

 Solution:
 \[
 \frac{10i}{(1-i)(2-i)(3-i)} = \frac{10i(1+i)(2+i)(3+i)}{2 \cdot 5 \cdot 10} = \frac{(-1+3i)(1+3i)}{10} = -1
 \]
 Answer: (C)

9. What is the area of the region enclosed by a closed curve \(z \) in the complex plane if \(|z - \sqrt{3} - i\sqrt{2}| = 13 \)?
 (A) 13\(\pi\) (B) 100\(\pi\) (C) 144\(\pi\) (D) 169\(\pi\) (E) NOTA

 Solution: The closed curve of \(z \) satisfying |\(z - \sqrt{3} - i\sqrt{2} \)| = 13 in the complex plane is a circle centered at \((\sqrt{3}, \sqrt{2})\) with radius 13, so the area enclosed by the circle is 169\(\pi\).

 Answer: (D)

10. Find \(a + b \) if two real numbers \(a \) and \(b \) satisfy \(a(1 + 2i) + b(2 - i) = 8 + 6i \).
 (A) 6 (B) 8 (C) 12 (D) 14 (E) NOTA

 Solution: \(a + 2b = 8, 2a - b = 6 \), so \(a = 4, b = 2 \)

 Answer: (A)

11. Let \(z \) be a complex root of \(z^5 - 1 = 0 \). Which one of the following is equal to \(1 + z + z^2 + \cdots + z^{2018} + z^{2019} \)?
 (A) \(i \) (B) \(-i\) (C) 1 (D) 0 (E) NOTA

 Solution:
 \[
 1 + z + z^2 + \cdots + z^{2018} + z^{2019} = (1 + z + z^2 + z^3 + z^4) + z^5(1 + z + z^2 + z^3 + z^4) + \cdots + z^{2015}(1 + z + z^2 + z^3 + z^4) = 0
 \]
 Answer: (D)

12. Let \(z \) and \(w \) be two nonzero complex numbers satisfying \(z + \overline{z} = 0 \) and \(w + \overline{w} = 0 \). What is the largest possible argument of \(\frac{z}{w} \)?
 (A) \(\frac{\pi}{4} \) (B) \(\frac{\pi}{2} \) (C) \(\pi \) (D) \(\frac{3\pi}{2} \) (E) NOTA

 Solution: Since both \(z \) and \(w \) are pure imaginary numbers, the largest possible angle between them is \(\pi \).
13. For a complex number z, if the real part of $\frac{z-1-i}{z+1+i}$ is 0, what is the distance from the origin to the point z in the complex plane?

(A) $\sqrt{2}$ (B) $\frac{\pi}{2}$ (C) π (D) $\frac{3\pi}{2}$ (E) NOTA

Solution: Let $z = a + bi$ where a and b are real. Then

$$\frac{z-1-i}{z+1+i} = \frac{a-1+(b-1)i}{a+1+(b+1)i} = \frac{a^2+b^2-2+(-2a+2b)i}{(a+1)^2+(b+1)^2} = 0,$$

so $|z| = \sqrt{a^2 + b^2} = \sqrt{2}$.

Answer: (A)

14. Consider the equation $z^6 + z^4 - z^3 + z^2 + 1 = 0$. Which of the following statement(s) is true?

a) $z^6 + z^4 - z^3 + z^2 + 1$ has three distinct factors of order 2.

b) There are exactly 6 distinct roots over complex number system, which are three pairs of complex conjugates.

c) The sum of the imaginary parts of all roots is positive.

(A) b (B) b and c (C) a and b (D) a (E) NOTA

Solution: Since $z^6 + z^4 - z^3 + z^2 + 1 = (z^2 + z + 1)(z^4 - z^3 + z^2 - z + 1) = \frac{(z^3-1)(z^5+1)}{(z-1)(z+1)}$, the roots of $z^6 + z^4 - z^3 + z^2 + 1 = 0$ are exactly six non real complex numbers out of the three roots of $z^3 = 1$ and five roots of $z^5 = -1$. Therefore, there are three pairs of complex conjugate roots and the sum of the imaginary parts of them is 0.

Answer: (A)

15. Given three vertices $4 + i$, $-1 - 2i$, $2 + 7i$ of a parallelogram, which one of the following complex numbers can be the fourth vertex?

(A) $1 + i$ (B) $7 + 10i$ (C) $-4 - 5i$ (D) $-5 - 4i$ (E) NOTA

Solution: By inspection, the midpoint of $7 + 10i$ and $-1 - 2i$ coincide the midpoint of $4 + i$ and $2 + 7i$.

Answer: (B)

16. Let m and n be the smallest positive integers such that $(1 + i\sqrt{3})^m = (1 - i)^n$. What is the value of $m + n$?

(A) 12 (B) 24 (C) 36 (D) 48 (E) NOTA

Solution: $(1 + i\sqrt{3})^m = 2^m \left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right)^m = 2^m \left(\cos\frac{m\pi}{3} + i \sin\frac{m\pi}{3}\right)$ and
\[(1 - i)^n = (\sqrt{2})^n \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)^n = (\sqrt{2})^n \left(\cos \frac{7n\pi}{4} + i \sin \frac{7n\pi}{4} \right).\] Thus, \(n = 2m\) and \(\frac{m\pi}{3} = \frac{7n\pi}{4} + 2\pi k\) for any integer \(k\).

Since \(k = \frac{19m}{12}\) must be an integer, the smallest positive choice of \(m\) is 12, and hence \(n = 24\).

Answer: (C)

17. If \(2 + i\) is a root of \(f(x) = x^3 + ax^2 + bx - 20\) where \(a\) and \(b\) are real numbers, what is the value of \(a + b\)?

(A) -5 (B) 5 (C) -13 (D) 13 (E) NOTA

Solution: The other solutions are \(2 - i\) and \(4\), so \(a = -(2 - i + 2 + i + 4) = -8\) and \(b = (2 - i)(2 + i) + (2 - i)(4) + (2 + i)(4) = 21\).

Answer: (D)

18. Let \(z_1\) and \(z_2\) be two solutions of the quadratic equation \(x^2 - 2x + 2 = 0\). If \(z\) is a complex number such that \(\Delta zz_1 z_2\) forms an equilateral triangle, what is the sum of all possible values of \(z\)?

(A) 2 (B) 0 (C) \(2\sqrt{3}\) (D) \(\sqrt{3}\) (E) NOTA

Solution: \(z_1\) and \(z_2\) are \(1 + i\) and \(1 - i\), and the distance between them is 2. Thus \(z\) is either \(1 + \sqrt{3}\) or \(1 - \sqrt{3}\).

Answer (A)

19. Let \(z_1, z_2, z_3\) be three complex numbers with \(|z_1 - z_2| = 7\) and \(|z_2 - z_3| = 4\). If we let \(M\) and \(m\) be the maximum distance and the minimum distance between \(z_1\) and \(z_3\), respectively, what is \(M + m\)?

(A) 11 (B) 12 (C) 13 (D) 14 (E) NOTA

Solution: The lotus of the points \(z_2\) is a circle centered at \(z_1\) with radius 7, and \(z_3\) lies on circles centered at \(z_2\) with radius 4. The maximum and the minimum distances between \(z_1\) and \(z_3\) occur when \(z_1, z_2, z_3\) are collinear. \(M = 11\) and \(m = 3\).

Answer: (D)

20. Let \(z_1, z_2, z_3, z_4, z_5\) be 5 vertices on the unit circle form a regular pentagon. What is the product of the distances from one vertex to each of the other 4 vertices?

(A) 4 (B) 6 (C) 8 (D) 10 (E) NOTA

Solution: \(z_1, z_2, \cdots, z_5\) are the roots of \(z^5 - 1 = 0\), so \(z^5 - 1 = (z - 1)(z^4 + z^3 + z^2 + z + 1) = (z - z_1)(z - z_2) \cdots (z - z_5) = 0\) and \(z_1 = 1\). Thus, \((1 - z_2)(1 - z_3)(1 - z_4)(1 - z_5) = 5\).

Answer: (E)
21. For how many number of real numbers \(x \) is \((x + i)^{4}\) real?
 (A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA

 Solution: \((x + i)^{4} = x^{4} - 6x^{2} + 1 + i(4x^{3} - 4x) . 4x^{3} - 4x = 0 \) if and only if \((x + i)^{4}\) is real.

 Answer: (C)

22. Let \(\omega = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \). Which one of the following is NOT true?
 (A) \(\omega^{2} = \overline{\omega} \) (B) \(\omega^{3} = -1 \) (C) \(\overline{\omega} = 1/\omega \) (D) \(\omega^{2} = -\omega - 1 \) (E) NOTA

 Solution: \(\omega^{3} = 1 \), so \(\omega^{2} + \omega + 1 = 0 \), and hence \(\overline{\omega} \omega = 1 \) and \(\omega^{2} = \overline{\omega} \).

 Answer: (B)

23. Which one of following best describes the graph of the equation \(|z| + |z - 2 + 4i| = 3\) in the complex plane?
 (A) A line (B) A circle (C) An ellipse (D) A parabola (E) NOTA

 Solution: Let \(z = x + yi \), then \(|z| + |z - 2 + 4i| = \sqrt{x^{2} + y^{2}} + \sqrt{(x - 2)^{2} + (y + 4)^{2}} = 3\).

 This yields an ellipse.

 Answer: (C) - Changed to E

24. Let \(z \) be a complex number and \(\overline{z} \) be the complex conjugate of \(z \). If both \(\frac{z}{10} \) and \(\frac{10}{z} \) have real and imaginary parts between 0 and 1, inclusive, what is the smallest value of \(|z|\)?
 (A) \(\sqrt{2} \) (B) \(5\sqrt{2} \) (C) 10 (D) 25 (E) NOTA

 Solution: Let \(z = x + yi \), then \(\frac{z}{10} = \frac{x}{10} + i \frac{y}{10} \), and \(\frac{10}{z} = \frac{10x}{x^{2}+y^{2}} + i \frac{10y}{x^{2}+y^{2}} \).

 Since \(0 \leq \frac{x}{10} \leq 1, 0 \leq \frac{y}{10} \leq 1, 0 \leq \frac{10x}{x^{2}+y^{2}} \leq 1, \) and \(0 \leq \frac{10y}{x^{2}+y^{2}} \leq 1, \) we have \(0 \leq x \leq 10, 0 \leq y \leq 10, \)

 \((x - 5)^2 + y^2 \geq 25, \) and \(x^2 + (y - 5)^2 \geq 25. \)

 Thus, the smallest value of \(|z|\) occurs when \(x = 5 \) and \(y = 5 \) in the area and

 \(|z| = \sqrt{5^2 + 5^2} = 5\sqrt{2}. \)

 Answer: (B)

25. When \(i - \frac{1}{i} \) is a root of a quadratic equation with real coefficients, what is the other root of the same equation?
 (A) \(i + \frac{1}{i} \) (B) \(2i \) (C) \(-\frac{2}{i} \) (D) \(\frac{2}{i} \) (E) NOTA

 Solution: Since \(i - \frac{1}{i} = 2i \), its complex conjugate \(-2i\) is also a root, so \(-2i = \frac{2i}{-1} = \frac{2i}{i^2} = \frac{2}{i}\) is a solution.
26. If \(f(n) = \left(\frac{1+i}{1-i} \right)^n + \left(\frac{1-i}{1+i} \right)^n \), find the sum \(\sum_{n=1}^{2018} f(n) \).

(A) 2 (B) -2 (C) 2i (D) -2i (E) NOTA

Solution: \(f(n) = (i)^n + (-i)^n \). \(\sum_{n=1}^{2018} f(n) = f(2) + f(4) + \cdots + f(2018) = 2((i)^2 + (i)^4 + (i)^6 + \cdots + (i)^{2018}) = -2 \)

Answer: (B)

27. Assume that \(z_1, z_2, z_3 \) are complex numbers with \(\frac{z_2 - z_1}{z_3 - z_1} = \sqrt{3} + i \). If the area of the triangle \(\Delta z_1z_2z_3 \) is equal to 18, what is \(|z_3 - z_1| \)?

(A) 4 (B) 5 (C) 6 (D) 7 (E) OTA

Solution: \(\arg \frac{z_2 - z_1}{z_3 - z_1} = \frac{\pi}{6} \) and \(|\frac{z_2 - z_1}{z_3 - z_1}| = 2 \). Since \(18 = \frac{1}{2} |z_2 - z_1| |z_3 - z_1| \sin \frac{\pi}{6}, |z_3 - z_1| = 6 \).

Answer: (C)

28. Let \(z \) and \(w \) be two nonzero complex numbers satisfying \(z^6 + z^3 + 1 = 0 \) and \(w^6 - w^3 + 1 = 0 \). How many distinct complex numbers of \(zw \) are possible?

(A) 6 (B) 9 (C) 12 (D) 18 (E) NOTA

Solution: Since \(z^6 + z^3 + 1 = \frac{(z^3-1)(z^6+z^3+1)}{(z^3-1)} = \frac{z^9-1}{z^3-1} = 0 \), only the six roots out of the nine roots of \(z^9 - 1 = 0 \), which do not satisfy \(z^3 - 1 = 0 \), are the roots of \(z^6 + z^3 + 1 = 0 \). The possible \(z \) is in the form of \(z = \cos \alpha + i \sin \alpha \) where \(\alpha = \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}, \frac{10\pi}{9}, \frac{14\pi}{9}, \frac{16\pi}{9} \). Similarly, there are six roots of \(w^6 - w^3 + 1 = \frac{(w^3-1)(w^6-w^3+1)}{(w^3-1)} = \frac{w^9+1}{w^3+1} = 0 \) with the form of \(w = \cos \beta + i \sin \beta \) where \(\beta = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}, \frac{13\pi}{9}, \frac{17\pi}{9} \). Therefore, \(zw = \cos(\alpha + \beta) + i \sin(\alpha + \beta) \) where \(\alpha + \beta = \frac{\pi}{9}, \frac{3\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \cdots, \frac{17\pi}{9} \).

Answer: (B)

29. Let \(z_1 \) be the root of \(z^5 = 1 \) with the smallest positive imaginary part. Let \(z_2 \) be the root of \(z^7 = 1 \) with the smallest positive imaginary part. What is the argument of \(z_1z_2 \)?

(A) \(\frac{2\pi}{35} \) (B) \(\frac{12\pi}{35} \) (C) \(\frac{24\pi}{35} \) (D) \(\frac{58\pi}{35} \) (E) NOTA

Solution: \(\arg(z_1) = \frac{4\pi}{5} \) and \(\arg(z_2) = \frac{6\pi}{7} \), so \(\arg(z_1z_2) = \frac{58\pi}{35} \).

Answer: (D)

30. Let \(x \) and \(y \) be two nonzero complex numbers satisfying \(x^2 + xy + y^2 = 0 \). What is the value of \(\left(\frac{x}{x+y} \right)^{100} + \left(\frac{y}{x+y} \right)^{100} \)?

(A) 0 (B) -1 (C) 1 (D) 2 (E) NOTA
Solution: $x^2 + xy + y^2 = 0$ yields $\left(\frac{x}{y}\right)^2 + \frac{x}{y} + 1 = 0$. Let $w = \frac{x}{y}$, then $w^2 + w + 1 = 0$, and hence $w^3 = 1$. Now $\left(\frac{x}{x+y}\right)^{100} + \left(\frac{y}{x+y}\right)^{100} = \frac{x^{100} + y^{100}}{(x+y)^{100}} = \frac{w^{100} + 1}{(w+1)^{100}} = \frac{w+1}{(-w^2)^{100}} = \frac{-w^2}{w^2} = \frac{-w^2}{w^2} = -1.$

Answer (B)