Answer “E” will be “NOTA” meaning none of the above answers is correct.

1. Find the 4th term of \((3x + 2)^7\), where terms are written in descending order by power of \(x\).
 a. 840\(x^4\) b. 2923\(x^4\) c. 22680\(x^4\) d. 210\(x^3\) e. NOTA

2. Find “r” such that when \(x^3 + (r - 1)x + 3\) is divided by \((x + 1)\) the remainder will be 5.
 a. -2 b. -1 c. 3 d. 4 e. NOTA

3. \(\frac{2 - 2i}{3 + 4i} = ?\)
 a. \(\frac{8\sqrt{5}}{25}\) b. \(\frac{8\sqrt{5}i}{25}\) c. \(\frac{2 + 14i}{25}\) d. \(\frac{2\sqrt{2}}{5}\) e. NOTA

4. Six distinct integers are selected at random from \(\{2015, 2016, 2017, ..., 2024\}\). What is the probability that, among those selected, the second smallest is 2017?
 a. \(\frac{1}{60}\) b. \(\frac{1}{6}\) c. \(\frac{1}{3}\) d. \(\frac{1}{2}\) e. NOTA

5. Benji the Bug starts at a point \((x, y)\) on the graph of \(4x^2 + 9y^2 = 36\). He walks in a straight line to the point \((\sqrt{5}, 0)\), then in a straight line to the point \((-\sqrt{5}, 0)\), then in a straight line to his original starting point. How far has Benji walked?
 a. \(6 + 2\sqrt{5}\) b. \(8 + 2\sqrt{5}\) c. \(10 + 2\sqrt{5}\) d. \(12 + 2\sqrt{5}\) e. NOTA

6. The following sequence is a quadratic sequence where any nth term can be represented by \(a_n = An^2 + Bn + C\) \(1, 6, 17, 34, 57, ...\) What is the value of \(A - B + C\)?
 a. -2 b. -1 c. 3 d. 9 e. NOTA

7. \(\lim_{n \to \infty} \frac{3}{n^2} \left(2 + 4 + 6 + ... + 2n\right) = ?\)
 a. 2 b. 3 c. 4 d. 6 e. NOTA
8. \[\sum_{k=3}^{\infty} \frac{8}{(k+2)(k-2)} = ? \]
 a. \(\frac{23}{6} \)
 b. \(\frac{-23}{6} \)
 c. \(\frac{25}{6} \)
 d. \(\frac{-25}{6} \)
 e. NOTA

9. If \(m \) and \(n \) are integers such that \(x^2 - x - 1 \) is a factor of \(mx^3 + nx^2 + 1 \), then \(n = ? \)
 a. -2
 b. -1
 c. 0
 d. 2
 e. NOTA

10. Simplify: \[\frac{(x^2-4y^2+4y-1)(x+2y)}{(x^2-x-4y^2+2y)(x^2+2y+x-4y^2)} \]
 a. \(x+2y \)
 b. \(\frac{x+2y}{2} \)
 c. \(\frac{1}{(x-2y)(x+2y)} \)
 d. \(\frac{1}{x-2y} \)
 e. NOTA

11. A 4 liter solution is \(X\% \) acid. If \(\frac{4}{3} \) liters of pure acid are added to this solution, the new solution becomes \((X+20)\% \) acid. What percent of the new solution is pure acid?
 a. 20
 b. 40
 c. 85
 d. Not possible
 e. NOTA

12. Given matrix \(A = \begin{pmatrix} -3 & -4 \\ 7 & 9 \end{pmatrix} \) Find the value of \[\left[\det(A^{-1}) + \text{the first row, second column entry of } A^{-1} \right] \].
 a. -57
 b. -50
 c. -6
 d. 5
 e. NOTA

13. Find the sum of the solutions for the following equation: \(9^{x-1} - 3^{x-1} - 2 = 0 \)
 a. \(\emptyset \)
 b. \(\log_3 6 \)
 c. \(\log_6 3 \)
 d. \(\log_6 6 \)
 e. NOTA

14. The number of solutions to \(\{L,U\} \subseteq X \subseteq \{M,R,Z,L,U\} \), where \(X \) is a set, is?
 a. 2
 b. 4
 c. 6
 d. 8
 e. NOTA
15. Find the length of the latus rectum of: \(y^2 - 16x - 4y - 60 = 0 \)
 a. \(\frac{1}{4} \)
 b. \(\frac{1}{16} \)
 c. 8
 d. 32
 e. NOTA

16. What is the sum of an infinite geometric series in which the 1st term is 1 and the common ratio is \(-\sqrt{2}\) ?
 a. Undefined
 b. \(\sqrt{2} - 1 \)
 c. \(\sqrt{2} + 1 \)
 d. \(\frac{\sqrt{2}}{2} \)
 e. NOTA

17. Describe the steps of: \(f(x) = \frac{1}{2}[3x] \), where \([\]\) represents the greatest integer function.
 a. \(\frac{1}{2} \) unit apart vertically, 3 units long
 b. 3 units apart vertically, 2 units long
 c. \(\frac{1}{2} \) unit apart vertically, \(\frac{1}{3} \) units long
 d. 2 units apart vertically, 3 units long
 e. NOTA

18. Given polynomial \(P(x) = x^4 + ax^3 + bx^2 + c \). If \(P(2) = 1 \), \(P(3) = 11 \), and \(P \) is an even function, then what is the value of \(a + b + c \) ?
 a. 11
 b. 18
 c. 22
 d. 25
 e. NOTA

19. If \(\frac{4 + 4^2 + 4^3 + \ldots + 4^{10}}{4^{-1} + 4^{-2} + 4^{-3} + \ldots + 4^{-10}} = 4^n \) then \(n = ? \)
 a. 0
 b. 1
 c. 10
 d. 11
 e. NOTA

20. What is the domain of \(y = \log \left(\frac{1}{\sqrt{x^2 - 4}} \right) \) ?
 a. \((-\infty, -2] \cup [2, \infty) \)
 b. \((-\infty, -2) \cup (2, \infty) \)
 c. \([2, \infty) \)
 d. \((2, \infty) \)
 e. NOTA

21. If \(\sin x = \frac{2}{5} \) and \(\sin 3x = \frac{L}{U} \) where \(L \) and \(U \) are relatively prime positive integers, what is \(|L - U| = ? \)
 a. 3
 b. 5
 c. 7
 d. 9
 e. NOTA
22. Determine which of the following angles is supplementary to 2.1 (round to two decimals).
 a. 167.90° b. 168.10° c. 1.04 d. 4.18 e. NOTA

23. \[\sin\left(\sin^{-1}\left(\frac{3}{5}\right) - \cos^{-1}\left(\frac{12}{13}\right)\right) = ? \]
 a. \(-\frac{33}{65}\) b. \(\frac{16}{65}\) c. \(\frac{56}{65}\) d. \(\frac{36}{65}\) e. NOTA

24. Suppose for the state of Florida in any 5-year period the probability of a major hurricane is .25, the probability of a major freeze is .44, and the probability of both a major hurricane and a major freeze is .22. What is the probability of a major freeze given that there is a major hurricane (round to two decimals)?
 a. 0.47 b. 0.50 c. 0.69 d. 0.88 e. NOTA

25. A piece of beef jerky is located at (12,10). Buffy is at (4,-2) and is running up the line \(y = -5x + 18 \). At the point \((k, n)\) Buffy starts getting farther from the beef jerky rather than closer to it. What is \(k + n\)?
 a. 6 b. 10 c. 14 d. 18 e. NOTA

26. For what value of \(k\) is \[i + 2i^2 + 3i^3 + \ldots + ki^k = 48 + 49i \]?
 a. 48 b. 49 c. 97 d. 98 e. NOTA

27. If \[|L| + L + U = 10 \]
 \[L + |U| - U = 12 \]
 what does \(L + U = ?\)
 a. -2 b. \(\frac{18}{5}\) c. \(\frac{22}{3}\) d. 22 e. NOTA

28. If \(\sin x + \sin y = \frac{\sqrt{15}}{3} \) and \(\cos x + \cos y = 1 \), what is \(\cos(x-y) \)?
 a. \(\frac{1}{3}\) b. \(\frac{1}{2}\) c. \(\frac{2}{3}\) d. 1 e. NOTA
29. The perimeter of an equilateral triangle is numerically equivalent to the area enclosed by its circumscribed circle. What is the diameter of the circle?

a. \(\frac{6\sqrt{2}}{\pi} \)

b. \(\frac{6\sqrt{3}}{\pi} \)

c. \(\frac{12}{\pi} \)

d. \(2\pi\sqrt{3} \)

e. NOTA

30. Find the distance between the points with polar coordinates: \((3, \frac{5\pi}{6}) \) and \((5, \frac{5\pi}{3}) \).

a. \(\sqrt{34 + 15\sqrt{3}} \)

b. \(\sqrt{34 - 15\sqrt{3}} \)

c. \(\sqrt{16 + 15\sqrt{3}} \)

d. \(\sqrt{16 - 15\sqrt{3}} \)

e. NOTA