Find the largest angle on the interval \([0, 2\pi]\) which satisfies \(4\sin x \cos x = \sqrt{3}\).

\[
4\sin x \cos x = 3.
\]

Answer : ________________________
Round 1 2 3 4 5

Answer : ________________________
Round 1 2 3 4 5
Simplify: \[\tan \frac{\pi}{4} \sin \frac{11\pi}{4} \cot \frac{18\pi}{4} + \sec \frac{5\pi}{6} \cos \frac{7\pi}{6}. \]
\[\sin A = \frac{5}{13} \quad \text{and} \quad \cos A = \frac{12}{13} \]

Find \(\cos \frac{1}{2} A \).
Find the perimeter of a sector of a circle whose central angle is 3 radians and whose radius is 6.

Answer: ____________________

Round 1 2 3 4 5

Find the perimeter of a sector of a circle whose central angle is 3 radians and whose radius is 6.

Answer: ____________________

Round 1 2 3 4 5
Find the smallest positive value of x for which $\sin(3x+10) = \cos(4x+3)$.

Answer: ________________

Round 1 2 3 4 5

Find the smallest positive value of x for which $\sin(3x+10) = \cos(4x+3)$.

Answer: ________________

Round 1 2 3 4 5
Evaluate \[2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)^3.\]
Find the sum of the solutions of
\[2\sin^2 x - 2\sin^2 x\cos x \sin x\cos x + \sin x = 0\]
over the interval \([0, 4\pi]\).

Answer: _________________
Round 1 2 3 4 5

Answer: _________________
Round 1 2 3 4 5
Using the interval \([0, 4] \), find the equation of the rightmost vertical asymptote on the graph of \(y = \tan \left(3x + \frac{7}{8} \right)\).

Answer: ________________________

Round 1 2 3 4 5

Using the interval \([0, 4] \), find the equation of the rightmost vertical asymptote on the graph of \(y = \tan \left(3x + \frac{7}{8} \right)\).

Answer: ________________________

Round 1 2 3 4 5
Evaluate \(\lim_{{q \to 0}} \frac{1 - \cos q}{2 \sin^2 q} \).

Answer: ________________

Round 1 2 3 4 5

Answer: ________________

Round 1 2 3 4 5
Evaluate \(\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \sin^2 4^\circ + \ldots + \sin^2 360^\circ \).
For how many values of x does $x^2 \sin x + 1 = 0$?

Answer: ________________

Round 1 2 3 4 5
Find the exact value of \(\sin \left(\cos^{-1} \left(\frac{2}{3} \right) \right) \).

Answer: ________________________

Round 1 2 3 4 5

Find the exact value of \(\sin \left(\cos^{-1} \left(\frac{2}{3} \right) \right) \).

Answer: ________________________

Round 1 2 3 4 5
Find the degree measure of the angle between the hour hand and minute hand of a clock at 4:15.

Answer: __________________
Round 1 2 3 4 5

Find the degree measure of the angle between the hour hand and minute hand of a clock at 4:15.

Answer: __________________
Round 1 2 3 4 5
Evaluate \(\lim_{q \to 0} \frac{\sin 2q}{q} \)

Answer: ________________________

Round 1 2 3 4 5

Answer: ________________________

Round 1 2 3 4 5
Find the amplitude of \(y = \sqrt{1 - \cos(2x)} + \sqrt{1 + \cos(2x)} \).

Answer: ________________________

Round 1 2 3 4 5

Find the amplitude of \(y = \sqrt{1 - \cos(2x)} + \sqrt{1 + \cos(2x)} \).

Answer: ________________________

Round 1 2 3 4 5
If \(\tan^{-1} \frac{5}{12} + 2\tan^{-1} a = 0 \), what is the value of \(a \)?

Answer: ________________________

Round 1 2 3 4 5

If \(\tan^{-1} \frac{5}{12} + 2\tan^{-1} a = 0 \), what is the value of \(a \)?

Answer: ________________________

Round 1 2 3 4 5
Find the product of the three complex cube roots of 8.

Answer: ________________________
Round 1 2 3 4 5

Find the product of the three complex cube roots of 8.

Answer: ________________________
Round 1 2 3 4 5
The domain of \(f(x) = \ln\left(\sin\left(2x - \frac{\pi}{4}\right)\right) \) on the interval \((0, 2\pi)\) is \((A, B) (C, D)\). Find the value of \(A + B + C + D\).

Answer: ________________________

Round 1 2 3 4 5

The domain of \(f(x) = \ln\left(\sin\left(2x - \frac{\pi}{4}\right)\right) \) on the interval \((0, 2\pi)\) is \((A, B) (C, D)\). Find the value of \(A + B + C + D\).

Answer: ________________________

Round 1 2 3 4 5
Find the sum of the periods of \(f(x) = 3\cot \frac{2}{3}x, \)
\(g(x) = |\sin 4x|, \) and \(h(x) = \frac{1}{2}\sec \frac{3}{4}x. \)

Answer: ____________________
Round 1 2 3 4 5
Find the area enclosed by triangle ABC where $a=12, b=24,$ and $C = 135^\circ$.

Answer: ________________________

Round 1 2 3 4 5

Find the area enclosed by triangle ABC where $a=12, b=24,$ and $C = 135^\circ$.

Answer: ________________________

Round 1 2 3 4 5
Find the exact value of \(\tan \left[2\arcsin \left(\frac{15}{17} \right) \right] \).

Answer: ____________________
Round 1 2 3 4 5

Find the exact value of \(\tan \left[2\arcsin \left(\frac{15}{17} \right) \right] \).

Answer: ____________________
Round 1 2 3 4 5
An angle x is chosen at random between 0 and 2π. What is the probability that $\sin x < 0.5$?

Answer: ________________________

Round 1 2 3 4 5

An angle x is chosen at random between 0 and 2π. What is the probability that $\sin x < 0.5$?

Answer: ________________________

Round 1 2 3 4 5
Find the number of solutions to $2 \sin^2 x = 4 \cos x$ on the interval $[-4, 4]$.

Answer: ________________

Round 1 2 3 4 5

Find the number of solutions to $2 \sin^2 x = 4 \cos x$ on the interval $[-4, 4]$.

Answer: ________________

Round 1 2 3 4 5
For $0^\circ < 180^\circ$, \(\frac{\cos q}{1 + \sin q} \) is a root of \(x^2 + 4x + 1 = 0 \). What is the value of \(q \)?
Evaluate without using trigonometric or inverse trigonometric functions, where $k > 0$:
\[\sin \left(2 \arctan \frac{k}{3} \right) \].