\[A = \int_{-2016}^{2016} x^2 \sin x^5 \, dx \quad B = \int_{-\infty}^{\infty} e^{-x^2} \, dx \quad C = \sum_{n=1}^{\infty} \frac{1}{n^2} \]

Compute \(ABC \).
Let R be the region bound by the graphs of $y = \sqrt{x}$ and $x = 2y$.

A = the volume when R is revolved about the x-axis.

B = the volume when R is revolved about the y-axis.

C = the volume when R is revolved about $y = -1$.

D = the volume when R is revolved about $x = 4$.

Compute $A + B + C + D$.
Compute $A B C D \ln E$.

$$A = \lim_{x \to 1} \frac{3x^5 - 9x^3 + 13x^2 - 14x + 7}{5x^4 - 3x^3 - 13x^2 + 15x - 4}$$

$$B = \lim_{x \to 2} \frac{\sqrt{x + 2} - 2}{\sqrt{3x + 3} - 3}$$

$$C = \lim_{h \to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \sin\left(\frac{\pi}{3}\right)}{h}$$

$$D = \lim_{x \to \infty} \left(\sqrt{x^2 + 5x} - \sqrt{x^2 - 3x}\right)$$

$$E = \lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^{2x}$$

Compute $A B C D \ln E$.
Let \(f(x) = x^2 \). \(S(a, b) \) is defined to be the sum of the slope(s) of the line(s) tangent to \(f \) that pass through the point \((a, b)\). If no tangent line to \(f \) pass through \((a, b)\), then \(S(a, b) = 0 \). For example:

\[
S(1, 1) = 2, \text{ since } y = 2x - 1 \text{ is the only line tangent to } f \text{ that passes through } (1, 1);
\]

\[
S(0, 1) = 0, \text{ since no tangent line to } f \text{ pass through } (0, 1);
\]

\[
S(0, -1) = 0, \text{ since both } y = 2x - 1 \text{ and } y = -2x - 1 \text{ are tangent to } f \text{ and pass through } (0, -1).
\]

Compute

\[
\sum_{b=0}^{100} \sum_{a=0}^{10} S(a, b)
\]
A = the area enclosed by the rectangular equation $4x^2 + 9y^2 - 16x - 54y + 61 = 0$.

B = the area enclosed by the polar equation $r = 3 \sin 3\theta$.

C = the area enclosed by the parametric equation $x = \sin t, y = 3 \sin 2t$.

Compute $\frac{A}{B} + C$.
A. Let \(f_1(x) = \sin x + \cos x \), approximate \(f_1(0.2) \) using the line tangent to \(f_1(x) \) at \(x = 0 \).

B. Let \(f_2(x) = \sqrt{25 - x^2} \), approximate \(f_2(3.1) \) using the line tangent to \(f_2(x) \) at \(x = 3 \).

C. Let \(f_3(x) = \frac{4}{x^2 + 3} \), approximate \(f_3(-1.1) \) using the line tangent to \(f_3(x) \) at \(x = -1 \).

D. Let \(f_4(x) = x^3 - 6x^2 + 12x \), approximate \(f_4(0.9) \) using the line tangent to \(f_4(x) \) at \(x = 1 \).

Define \(E(X) \) as a function of part \(X \) of this problem. The value of \(E(X) \) is the value of the approximation if part \(X \) results in an overestimate, or the negation of the approximation if part \(X \) results in an underestimate. Compute \(E(A) + E(B) + E(C) + E(D) \).
Compute $A + B + C$.
A = \int_0^6 (36x - x^3) \, dx

B = approximation of A using midpoint Riemann sum with 3 equal intervals.

C = approximation of A using trapezoidal rule with 3 equal intervals.

Compute \(A + B - C - D \).
A 200mL container is lined with a membrane that allows water to seep through at a rate proportional to the concentration of water in the container. The container is initially full of a 20% solution of alcohol in water. As water seeps out of the container, it is instantly replaced with a 20% solution of alcohol in water and remixed evenly. If 400mL of water seeps through in 2 hours, how many hours does it take in total for the concentration of alcohol inside the container to reach at least 90%?
Let $f(x) = \frac{1}{2}x^2 + bx + c$, where $b = 3, c = -8$.

A = the greater of two zeros of $f(x)$.

B = the rate of change of the greater of two zeros of $f(x)$ if b is changing at 2 per second and c is constant at the moment when $b = 3, c = -8$.

C = the rate of change of the greater of two zeros of $f(x)$ if b is constant and c is changing at 2 per second at the moment when $b = 3, c = -8$.

D = the rate of change of the greater of two zeros of $f(x)$ if b and c are changing at 2 per second at the moment when $b = 3, c = -8$.

Compute $A + B + C + D$.
\(f \) is a twice differentiable function over all real numbers. The table below shows the value of \(f \) and \(f' \) at select values on the interval \([0, 10]\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-3</td>
<td>2</td>
<td>4</td>
<td>-4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>4</td>
</tr>
</tbody>
</table>

A = the minimum number of zeros of \(f \) on \((0, 10)\).
B = the minimum number of local maxima of \(f \) on \((0, 10)\).
C = the minimum number of local minima of \(f \) on \((0, 10)\).
D = the minimum number of points of inflection of \(f \) on \((0, 10)\).
Compute \(A^2 + B^2 + C^2 + D^2 \).
f and g are invertible functions that are locally differentiable at 1, 2, 3, and 4. The table below shows the evaluation of those functions and their derivatives. Let

\[
\begin{align*}
h_1(x) &= f(2x) + g(3x) \\
h_2(x) &= f\left(f(f(x))\right) \\
h_3(x) &= xf(x^2) \\
h_4(x) &= f(x)g^{-1}(x) \\
h_5(x) &= f(x)(g(x))^{-1} \\
h_6(x) &= f(f^{-1}(x))
\end{align*}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>f</th>
<th>f'</th>
<th>g</th>
<th>g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-6</td>
</tr>
</tbody>
</table>

Compute $h'_1(1) + h'_2(3) + h'_3(2) + h'_4(4) + h'_5(3) + h'_6(4)$.

f and g are invertible functions that are locally differentiable at 1, 2, 3, and 4. The table below shows the evaluation of those functions and their derivatives. Let

\[
\begin{align*}
h_1(x) &= f(2x) + g(3x) \\
h_2(x) &= f\left(f(f(x))\right) \\
h_3(x) &= xf(x^2) \\
h_4(x) &= f(x)g^{-1}(x) \\
h_5(x) &= f(x)(g(x))^{-1} \\
h_6(x) &= f(f^{-1}(x))
\end{align*}
\]

<table>
<thead>
<tr>
<th>x</th>
<th>f</th>
<th>f'</th>
<th>g</th>
<th>g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-6</td>
</tr>
</tbody>
</table>

Compute $h'_1(1) + h'_2(3) + h'_3(2) + h'_4(4) + h'_5(3) + h'_6(4)$.
\[
A = \int_{-2}^{1} x\sqrt{x + 3} \, dx \\
B = \int_{0}^{3} x\sqrt{9 - x^2} \, dx \\
C = \int_{0}^{2} x e^{x/2} \, dx \\
D = \int_{0}^{\pi} \sin 2x \, e^{\sin x} \, dx \\
\text{Compute } 5A - B + C - 2D.
\]
Let $f(x) = x^2 e^x$. Let $f^{(k)}(x)$ denote the k^{th} derivative of $f(x)$, then the sum
\[\sum_{k=1}^{20} f^{(k)}(x) \]
can be expressed as $Ax^2 e^x + Bxe^x + Ce^x$, where A, B, C are real. Compute $A + B + C$.
Let \(\ell_1 \) be the line described by \(x = \frac{y-3}{2} = \frac{z-3}{2} \), and \(\ell_2 \) be the line \(\frac{x}{2} = \frac{y+1}{3} = \frac{z+4}{6} \).

Particle A moves along \(\ell_1 \) at a constant speed of 6 units per second. Particle B moves along \(\ell_2 \) at a constant speed of 7 units per second. At \(t = 0 \), particle A is at point \((0, 3, 3)\), and particle B is at the point \((0, -1, -4)\). Both particles are moving in the direction such that their \(x \)-coordinates are increasing. At time \(t = T \) seconds, the two particles make their closest approach to each other, where they are \(D \) units apart. Compute \(T^2 + D^2 \).