

Short Cuts

GENERAL INSTRUCTIONS:

- 1.) Do not begin the test until told to do so.
- 2.) Use a #2 pencil. Be sure that all Scantron ovals are fully filled in and that all erasures are complete.
- 3.) Please PRINT your name and school in the name blank and the topic of this test in the subject blank on your Scantron answer sheet.
- 4.) There will be limited calculator usage on this test. Specific calculators

Radio Shack: EC-4008

Casio: FX-82, FX-115, FX-250, FX-300, FX-570, and FX-991 series

Sharp: EL-506 (except EL-506D), EL-509, EL-520, EL-531, and EL-546 series

Texas Instruments: TI-25, TI-30, TI-31, TI-34, TI-35, and TI-36 series

5.) If there is a need for a tie breaker, we will call you back. All tie breakers will be based on content of the test, speed, and accuracy.

- A regular polygon has an exterior angle of 8°. How many sides does this polygon have?
- a. 25
- b. 27
- c. 36
- d. 45
- e. not given

- Solve for x: $\log_{10}(\log_2(\log_4 x)) = 0$. 2.
- a. 2
- b. 4
- c. 8
- d. 16 e. not given
- Which of the following is a factor of $x^3 + 4x^2 15x 18$? 3.
- a. x + 9
- b. x 1

- c. x 3 d. x 6 e. not given
- Find the positive numerical value, in simplest form, of the expression, 4.

$$\sqrt{12 + \sqrt{12 + \sqrt{12 + \sqrt{12 + \dots}}}}$$

- a. 3
- b. 4
- c. 6 d. 12
- e. not given

- Find the remainder when $x^{101} 4x^3 + 5x^2 5$ is divided by x 1. 5.
- a. 4
- b. 3
- c. -3 d. -4
- e. not given

6. A circle is inscribed in a right triangle whose legs are 8 and 15. What is the radius of the inscribed circle?

- a. 3
- b. 4
- c. 5
- d. 6
- e. not given

7. Simplify: $(1-i)^{20}$

- a. -1024
- b. -1024i
- c. 1024i
- d. 1024
- e. not given

8. If $x^2 + y^2 = 10$ and $(x - y)^2 = 2$, find the numerical value of xy.

- a. 8
- b. -8
- c. 4
- d. -4
- e. not given

9. Two successive discounts of 20% and 20% are followed by two successive increases of 20% and 20%. What single percentage change would produce the same result? State your answer to the nearest tenth of a percent and indicate whether it is a discount or an increase.

- a. no change
- b. 8.2% increase
- c. 7.8% increase
- d. 8.2% decrease

e. not given

10. Given Triangle ABC. Side AB is extended to D. Angle CBD = (2x + 70), Angle CAB = (3x - 5) and Angle ACB = (x + 60). Find the numerical measure of Angle CBA. All angles are in degrees.

a. 75

faired

- b. 80
- c. 85
- d. 90
- e. not given

11. Find the measure of the smaller angle formed by the hour hand and minute hand of a clock at 6:42. All answers are in degrees.

- a. 48
- b. 51
- c. 55
- d. 59
- e. not given

12. Calculate the sum of the reciprocals of the roots of the equation: $x^4 + 4x^3 - 8x^2 + 16x - 32 = 0$.

- a. -2
- b. -.05
- **c**. 0.5
- d. 2
- e. not given

13. In how many zeros does 100! end?

- a. 20
- b. 24
- c. 35
- d. 36
- e. not given

14. If $x = \sqrt{3 + 2\sqrt{2}} - \sqrt{3 - 2\sqrt{2}}$ then x in simplied form is

- a. 6
- b. 4
- c. 2
- d.

0

e. not given

- 15. Find the value of |40 + 9i|.
- a. 40 + 9i
- b. 40 -9i
- c. -40 9i
- d. -40 + 9i
- e. not given

- 16. If $P(x) = 3x^4 ax^2 + bx 2$ is divided by x + 2, the remainder is 34. When P(x) is divided by x 3 the remainder is 271. Find 2a + b.
- a. -10
- b. -2
- c. 2
- **d**. 10
- e. not given

- 17. Five tests scores were lost, but a summary of those scores indicated the mode was 90, the median, 85, and the mean, 83. If the grades were integers from 0 to 100 (inclusive), what is the lowest possible grade from the missing scores?
- a. 50

1

- b. 55
- c. 66
- d. 68
- e. not given
- 18. If the interior angle of a regular convex polygon is thirteen times as larges as the exterior angle, how many diagonals has the polygon?
- a. 299
- b. 324
- c. 350
- d. 377
- e. not given
- 19. When $(9x^2 6xy + y^2)^5$ is expanded and written in polynomial form with integral coefficients in descending order. The sum of the coefficients is ...
- a. 256
- b. 512
- c. 1024
- d. 2048
- e. not given

- 20. What is the sum of the elements in the twelfth row of Pascal's Triangle?
- a. 2047
- b. 2048
- c. 4095
- d. 4096
- e. not given

- In a circle, a quadrilateral is inscribed. If the quadrilateral is ABCD with AB = 20, BC = 15, CD = 25, and AD = 20, and AC = 25, Find the numerical length of the other diagonal BD.
- a. 18
- b. 24
- c. 27
- d. 32
- e. not given
- 22. How many positive integers less than 2000 are divisible by neither three or seven?
- a. 810
- b. 954
- c. 1049
- d. 1144
- e. not given

- 23. If k and m are roots of $3x^2 4x 1 = 0$ the value of $\log_3 k + \log_3 m$ is
- a. -2
- b. -1
- c. 1
- d. 2
- e. not given

- 24. Find the area of the quadrilateral whose vertices have coordinates of A(8, 2), B(-4,6), C(-3, -7), D(5, -3)
- a. 90
- b. 120
- c. 150
- d. 180
- e. not given

Three tangent spheres A, B, and C are also tangent to line m. Sphere C is nested between spheres A and B. If the radius of Circle A is 24 and the radius of circle B is 12. What is the shortest numerical distance between the point of tangency of Circle A and line m to the point of tangency of Circle B and line m?

- a. 18
- b. 24
- c. 27
- d. 36
- e. not given

Suppose the roots of $ax^2 + bx + c = 0$ are r and s. Which one of the following has roots ar + b and as + b?

$$a. x^2 - bx - ac = 0$$

b.
$$x^2 - bx + ac = 0$$

c.
$$x^2 + 3bx + ca + 2b^2 = 0$$

d.
$$x^2 + 3bx - ca + 2b^2 = 0$$
 e. not given

27. Find a for which a < b and
$$\sqrt{1 + \sqrt{21 + 12\sqrt{3}}} = \sqrt{a} + \sqrt{b}$$
.

- a. 1
- b. 3
- c. 4
- d. 12
- e. not given

Given a circle with two intersecting chords, AB and CD, at point P. AP = 2, PB = 6, CP = 3 and PD = 4. Find the diameter of this circle.

- a. $2\sqrt{62}$
- b. $3\sqrt{7}$ c. 8
- d. $\sqrt{65}$
- e. not given

How many terms are there in the expansion $(a + b + c + d)^{10}$? **29**.

a. 11

b. 15

c. 286

d. 10000

e. not given

30.
$$S = \frac{1}{2} + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \left(\frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5}\right) + \dots + \left(\frac{1}{100} + \dots + \frac{99}{100}\right), S = ?$$

a. 1000 b. 1575

c. 2200 d. 2475

e. not given