

Limits & Derivatives Mu, Round 1 Test #112

- 1. Write your 6-digit ID# in the I.D. NUMBER grid, left-justified, and bubble. Check that each column has only one number darkened.
- 2. In the EXAM NO. grid, write the 3-digit Test # on this test cover and bubble.
- 3. In the Name blank, print your name; in the Subject blank, print the name of the test; in the Date blank, print your school name (no abbreviations).
- 4. Scoring for this test is 5 times the number correct + the number omitted.
- 5. You may not sit adjacent to anyone from your school.
- 6. TURN OFF ALL CELL PHONES OR OTHER PORTABLE ELECTRONIC DEVICES NOW.
- 7. No calculators may be used on this test.
- 8. Any inappropriate behavior or any form of cheating will lead to a ban of the student and/or school from future national conventions, disqualification of the student and/or school from this convention, at the discretion of the Mu Alpha Theta Governing Council.
- 9. If a student believes a test item is defective, select "E) NOTA" and file a Dispute Form explaining why.
- 10. If a problem has multiple correct answers, any of those answers will be counted as correct. Do not select "E) NOTA" in that instance.
- 11. Unless a question asks for an approximation or a rounded answer, give the exact answer.

Note: For all questions, answer "(E) NOTA" means none of the above answers is correct.

1. Let $f(x) = \frac{x^2 - 9}{x - 3}$. What is f(3)?

- (A) 3
- (B) 6
- (C) 0
- (D) Undefined

(E) NOTA

2. Which of the following concepts is best associated with the slope of a function, the length of a curve, and the area of a region bounded by curves?

- (A) Derivatives (B) Limits
- (C) Integrals
- (D) Continuity (E) NOTA

3. Evaluate: $\lim_{x\to 2} \frac{\sin(x-2)}{2x-4}$

- (A) 0
- (B) 0.50
- (C) -1
- (D) Undefined (E) NOTA

4. Find the derivative of $f(x) = \sin\left(\frac{1}{x^2+4}\right)$.

- (A) $\frac{2x\cos(\frac{1}{x^2+4})}{(x^2+4)^2}$ (B) $-\frac{\cos(\frac{1}{x^2+4})}{(x^2+4)^2}$ (C) $\cos(\frac{1}{x^2+4})$ (D) $\frac{2x}{(x^2+4)^2}\sin(\frac{1}{x^2+4})$ (E) NOTA

5. What is the value of $\lim_{x\to 0} \frac{\cos(x)-1}{\sin(x)+1}$?

- (A) Undefined (B) -1
- (C) 0
- (D) 1

(E) NOTA

6. Let $f(x) = x^3 - 4x$. Which of the following is not a possible value of f'?

- (A) 1
- (B) 0
- (C) -4 (D) -6

(E) NOTA

7. Evaluate: $\lim_{x\to 0} \frac{\tan x - x}{x^3}$

- (A) 1/3
- (B) 3/8
- (C) 1
- (D) 1/2

(E) NOTA

8. Let $g(x) = \sqrt{4 - x^2}$. For which of the following values of c does $\lim_{x \to c^-} g(x)$ exist but $\lim_{x\to c^+} g(x)$ not exist?

- (A) c = 0 (B) c = 2 (C) c = -2 (D) c = 3 (E) NOTA

9.	If $h(x) = x^2 \cos(x)$, what is the value of $h''\left(\frac{\pi}{2}\right)$?					
	(A) 2	(B) 2π	(C) −2	(D) -2π	(E) NOTA	
10. Let f be a differentiable function where $f(1) = 2$, $f(2) = 5$, $f'(1) = 4$, and $f'(2) = 7$. Also, let $g(x) = f(x) + 5$. If $h(x) = g(f(x))$, find $h'(1)$.						
	(A) 4	(B) 7	(C) 16	(D) 28	(E) NOTA	
11. Consider the function $f(x) = \frac{x^3 + x^2 - 34x + 56}{x^2 + 4x - 12}$. Evaluate: $\lim_{h \to 0} f(2 + h)$						
	(A) $-\frac{9}{4}$	(B) $-\frac{3}{2}$	(C) 0	(D) ∞	(E) NOTA	
12. Find the limit as x approaches positive infinity of the function $c(x) = \frac{3x+40}{\sqrt{4x^2+1}-16}$.						
	(A) 0	(B) $\frac{3}{4}$	(C) $-\frac{5}{2}$	(D) ∞	(E) NOTA	
13. For real number x , the Dirichlet Function is defined as $D(x) = \begin{cases} 0, & x \text{ is rational} \\ 1, & x \text{ is irrational} \end{cases}$ D is an example of a function that is:						
		nd differentiable n part of its doma	•	(B) Continuous everywhere.(D) Discontinuous everywhere.		
14. The expression $\lim_{x\to 0}\frac{1-\cos(1-\cos x)}{x^4}$ is equal to m/n , where m and n are relatively prime positive integers. Find the sum of the digits of m^2+n^2 .						
	(A) 10	(B) 11	(C) 12	(D) 13	(E) NOTA	
15.	15. If $L = \lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$, find the sum of the digits of the greatest integer less than $1000L$.					
	(A) 20	(B) 18	(C) 10	(D) 9	(E) NOTA	
16. Let g be a continuous and differentiable function defined by $g(x) = \sin(\pi x)$ if $x \le 2$ and $g(x) = ax^2 + b$ if x is any other real number. Find $a + b$.						
	(A) $\frac{\pi}{4}$	(B) $\frac{5}{4}\pi$	(C) $-\frac{3}{4}\pi$	(D) 0	(E) NOTA	

17. Let $f(x) = \frac{1}{2}e^{2x-5}$. Find the maximum value of f''' on $0 \le x \le 3$.

- (A) e
- (B) 2e
- (C) 3e
- (D) 4e

(E) NOTA

18. Find the sum of all values of x for which the function $f(x) = \sqrt{|x^2 - 5x + 6|}$ is continuous, but not differentiable.

- (A) -5
- (B) 0
- (C) 5
- (D) 6

(E) NOTA

19. Evaluate: $\lim_{x\to 0} \frac{(1+\tan x)^{\frac{1}{x}}-e}{x}$

- (A) -1 (B) Undefined (C) $-\frac{e}{2}$ (D) $-\frac{\pi}{3} \ln 2$ (E) NOTA

20. At what point does $y^2 + 2x^3 + 3xy = 0$ have a vertical tangent but no horizontal tangent?

- (A) $\left(\frac{9}{8}, -\frac{27}{16}\right)$ (B) (0,0) (C) (1,-2) (D) $\left(\frac{3}{4}, -\frac{9+3\sqrt{3}}{8}\right)$ (E) NOTA

21. Find the derivative of $f(x) = \ln\left(\frac{x^4+1}{(\sin(4x)+2)^2}\right)$.

- (A) $\frac{4x^3}{(\sin(4x)+2)^2} \frac{8(x^4+1)\cos(4x)}{(\sin(4x)+2)^3}$ (B) $\ln(-\frac{x^3}{\cos(4x)})$ (C) $\frac{4x^3}{x^4+1} \frac{8\cos(4x)}{\sin(4x)+2}$ (D) $\frac{4(x^4+1)\cos(4x)}{(\sin(4x)+2)^2} \frac{4x^3}{\sin(4x)+2}$

(E) NOTA

22. Supposing that $y = 1 + x + x^2 + x^3 + \cdots$, with |x| < 1, which of the following expressions is equivalent to y'?

- (A) y"
- (B) y * y (C) y
- (D) y!

(E) NOTA

23. Evaluate: $\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n e^{x/2} dx$

- (A) e (B) $\frac{1}{4}$ (C) 1 (D) $\frac{3}{2}$

(E) NOTA

For problems 24 through 26, we examine the number e (\sim 2.71828...). This number is defined by $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. We will show that this limit converges using two sequences to help us out: $a_n = \left(1 + \frac{1}{n}\right)^n$ and $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$.

- 24. The first few steps in the proof are to show that a_n is an increasing sequence (that is, $a_{n+1} > a_n$) and that b_n is a decreasing sequence (that is, $b_{n+1} < b_n$). For both of these steps, which of the following inequalities will be the most helpful?
 - (A) AM-GM Inequality
- (B) Cauchy-Schwarz Inequality
- (C) Triangle Inequality
- (D) Bernoulli's Inequality
- (E) NOTA
- 25. Next, if we can show that a_n and b_n converge to the same limit as n approaches positive infinity, we can define e to be that limit. Find a general formula for $b_n - a_n$.

 - (A) $\left(1 + \frac{1}{n}\right)^n$ (B) $\left(1 + \frac{1}{n}\right)^{n-1}$ (C) $\frac{a_n}{n!}$ (D) $\frac{1}{n}a_n$
- (E) NOTA
- 26. It can be shown that $b_n > a_n$ for all positive integers n, and that $b_n a_n < \frac{4}{n}$. Using this information, which of the following theorems can be best used to show that a_n and b_n converge to the same limit? In other words, that $\lim_{n\to\infty}(b_n-a_n)=0$.
 - (A) Fermat's Last Theorem
- (B) Fundamental Theorem of Calculus
- (C) Squeeze Theorem
- (D) Pythagorean Theorem
- (E) NOTA

27. Evaluate:

$$\lim_{s \to \infty} \frac{1}{s} \sum_{i=1}^{s} \sin\left(\frac{i\pi}{s}\right)$$

- (A) $\frac{2}{\pi}$
- (B) 2
- (C) 2π (D) $\frac{\pi}{2}$
- (E) NOTA
- 28. It can be shown, using the Delta-Epsilon definition of a limit, that $\lim_{x\to 4} \sqrt{x} = 2$. If $\varepsilon = 0.05$, which of the following values of δ would satisfy the definition?
 - 1) $\delta = 0.2025$
 - 2) $\delta = 0.1975$
 - 3) $\delta = 0.05$
 - (A) 1, 2 and 3 (B) 2 and 3 only (C) 1 and 2 only (D) 3 only
- (E) NOTA

29. Let $h(x) = \tan(x^2)$. On the interval $0 \le x \le 2\pi$, how many points of discontinuity does h have?

(A) 12

(B) 13

(C) 14

(D) 15

(E) NOTA

30. Suppose f is a real-valued function defined on |x| < 1, where f is continuous at x = 0. Moreover, f(0) = 1 and if |x| < 1, then $(1+x)f(x^2) = f(x)$. It can be shown that there is only one function f that satisfies the aforementioned properties. Find the sum of the digits of $f'(\frac{2012}{2013})$.

(A) 27

(B) 24

(C) 21

(D) 18

(E) NOTA