Question	Solution
P1.	Using the Change of Base formula backwards, the logarithm simplifies to $\log_{64} 1024 = \frac{10}{6} = \frac{5}{3}$.
P2.	The integral is equal to $37^2 - 13^2 = (37 + 13)(37 - 13) = (50)(24) = 1200$.
P3.	Since 4004 is even, the smallest positive prime factor is 2 .
P4.	Since cosine and secant are reciprocals of each other, $y = 1$ and so the derivative is 0 .
P5.	We have $BAD + C = BA(0) + 2 = 2$.
1.	If $x = 3$, then $ 3 - 2 < 3 - 6 $, or $1 < 3$, which is true. However, if $x = 4$, then $ 4 - 2 < 4 - 6 $, or $2 < 2$, which is false. The largest integer solution is therefore $x = 3$.
2.	The period of $y = \sin\left(\frac{\pi x}{6}\right)$ is $\frac{2\pi}{\pi/6} = 12$. The absolute value cuts the period in half, since portions below the <i>x</i> -axis get reflected to positive values, so the graph starts the cycle quicker. The answer is 6 .
3.	By L'Hopital's Rule, $\lim_{x \to 0} \frac{\sin(2013x)}{2013x} = \lim_{x \to 0} \frac{2013\cos(2013x)}{2013} = 1.$
4.	Using the series $\sin^2 x = x^2 - \frac{x^4}{3} + \frac{2x^6}{45} - \frac{x^8}{315} + \cdots$, we have $\frac{1}{\sin^2 x} - \frac{1}{x^2} = \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = \frac{x^2 - \left(x^2 - \frac{x^4}{3} + \frac{2x^6}{45} - \frac{x^8}{315} + \cdots\right)}{x^2 \left(x^2 - \frac{x^4}{3} + \frac{2x^6}{45} - \frac{x^8}{315} + \cdots\right)} = \frac{\frac{x^4}{3} - \frac{2x^6}{45} + \frac{x^8}{315} - \cdots}{\left(1 - \frac{x^4}{3} + \frac{2x^6}{45} - \frac{x^8}{315} + \cdots\right)}$. As x approaches 0, this expression tends to 1/3.

5.	We have $ABCD^{-1} = (3)(6)(1)(1/3)^{-1} = 54$.
6.	Since $2^{12} < 5566 < 2^{13}$, the binary representation of 5566 is a 1 followed by 12 other digits for a total of 13 digits.
7.	For convenience's sake, let square <i>ABCD</i> have a side length of 2. We know that triangles <i>AED</i> and <i>DFC</i> are congruent. Let $\phi = \angle EDA = \angle FDC$ so that $\theta = \frac{\pi}{2} - 2\phi$; thus, $\sin \theta = \sin \left(\frac{\pi}{2} - 2\phi\right) = \cos(2\phi) = 1 - 2\sin^2 \phi$. Since $\sin \phi = 1/\sqrt{5}$, we have $\sin \theta = 1 - 2\sin^2 \phi = 1 - 2\left(\frac{1}{\sqrt{5}}\right)^2 = 1 - \frac{2}{5} = \frac{3}{5}$.
8.	The numerator is a constant and the denominator grows without bound, so the limit is 0 .
9.	By L'Hopital's Rule, $\lim_{x\to\infty} \frac{12x-5}{4+3x} = \lim_{x\to\infty} \frac{12}{3} = 4.$
10.	We have $A^2 - BC + D^2 = 13^2 - B(0) + 4^2 = 169 + 16 = 185$.
11.	If $L(x) = mx + b$, then $I(x) = \frac{x-b}{m}$. So we have $mx + b = \frac{4(x-b)}{m} + 3$, or $mx + b = \frac{4x}{m} + 3 - \frac{4b}{m}$. Set corresponding coefficients equal to each other to obtain the equations $m = 4/m$ and $b = 3 - \frac{4b}{m}$. Since the slope is positive, $m = 2$. Plug this into the second equation to get $b = 3 - \frac{4b}{2} = 3 - 2b$, or $b = 1$. Thus, L(10) = 2(10) + 1 = 21.
12.	By the Power-Reducing formula $\cos^2 x = \frac{1+\cos(2x)}{2}$, we have $\cos^2 x = \frac{1+\frac{3}{7}}{2} = \frac{5}{7}$, so that $m + n = 12$.
13.	The slope when $x = 7$ is $y'(7) = 2(7) - 11 = 3$. The equation of the line is $y - 25 = 3(x - 7)$, or $y = 3x + 4$. Thus, $m^2 + b^2 = 25$.

14.	A function whose second derivative is identically zero is a linear function. Let
	$f(x) = mx + b$. From the given information, $b = 20$ and $m = \frac{20-13}{0.1} = -7$. Thus,
	f(17) = -7(17) + 20 = -99
15.	We have $-A + B - C + D = -21 + 12 - 25 + -99 = -133$.
16.	By inspection, $x = 1$.
4.5	We have $\sin 20^{\circ} (\tan 10^{\circ} + \cot 10^{\circ}) = 2 \sin 10^{\circ} \cos 10^{\circ} \left(\frac{\sin 10^{\circ}}{\cos 10^{\circ}} + \frac{\cos 10^{\circ}}{\sin 10^{\circ}} \right) =$
17.	$2(\sin^2 10^\circ + \cos^2 10^\circ) = 2.$
	The volume of the sphere is $\frac{4}{2}\pi(6)^3 = 288\pi$. The volume of the desired region can
	be obtained by revolving the region bounded by $y = \sqrt{26 - x^2}$ and the x-axis on
18.	be obtained by revolving the region bounded by $y = \sqrt{30} - x^2$ and the x-axis of
	the interval [-6, 3] about the x-axis. This volume is $\pi \int_{-6}^{3} (\sqrt{36} - x^2)^2 dx = 243\pi$,
	making the ratio equal to $\frac{243}{288} = \frac{27}{32}$.
	By the Chain Rule, $(f(g(x)))' = f'(g(x))g'(x)$. Evaluated at $x = 5$, we have
19.	$f'(a(5))a'(5) = f'(3)a'(5) = 4 \times 7 = 28$
	$\int (g(3))g(3) - f(3)g(3) - 1 \times 7 - 20.$
20	We have $(A+B)^3 + D = (1+2)^3 + 28 = 22 + 14 = 46$
20.	We have $\frac{1}{C} + \frac{1}{2} - \frac{1}{27/32} + \frac{1}{2} - \frac{32}{27/32} + \frac{14}{2} - \frac{40}{32}$.
	Hence and hence here a second level common difference of (2 4 and
	Hexagonal numbers have a second-level common difference of $6 - 2 = 4$ and
21.	octagonal numbers have a second-level common difference of $8 - 2 = 6$. Thus,
	the hexagonal numbers are 1, 6, 15, 28, and the octagonal numbers are
	1, 8, 21, 40, The answer is $15 + 40 = 55$.
	Let $x = \cos t$ and $y = \sin t$, this is a logal substitution since $x^2 + y^2 = 1$. Note that
22.	Let $x = \cos t$ and $y = \sin t$; this is a legal substitution since $x^2 + y^2 = 1$. Note that
	$x + y = \cos t + \sin t = \sqrt{2} \sin \left(t + \frac{\pi}{4} \right)$, so the maximum value of $x + y$ is $\sqrt{2}$. Thus,

	the maximum value of $2(x + y)^3$ is $2\left(2^{\frac{3}{2}}\right) = 2 \times 2\sqrt{2} = 4\sqrt{2}$.
23.	The integrand is the three-way Product Rule applied to $F(x) = (x - 1)e^x \cos x$. Thus, the integral is equal to $F\left(\frac{\pi}{2}\right) - F(1) = 0 - 0 = 0$.
24.	The integrand is the Quotient Rule applied to $G(x) = \frac{x^2+3}{\sqrt{x}}$. Thus, the integral is equal to $G(9) - G(1) = 24$.
25.	We have $A^2 - B^2 + C^2 - D = 55^2 - (4\sqrt{2})^2 + 0^2 - 24 = 2969.$
26.	Notice that vectors a , b , and c are mutually orthogonal to each other. Let $\mathbf{d} = [-6, -17, 6]$. We have $c_1 = \frac{\mathbf{d} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}} = \frac{12}{2} = 6$, $c_2 = \frac{\mathbf{d} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} = \frac{-68}{34} = -2$, and $c_3 = \frac{\mathbf{d} \cdot \mathbf{c}}{\mathbf{c} \cdot \mathbf{c}} = \frac{51}{17} = 3$, so $c_1 c_2 c_3 = -36$.
27.	If <i>n</i> is an integer, we have the identities $\sin(2\pi x) = \cos\left(\frac{\pi}{2} - 2\pi x + 2\pi n\right) = \cos\left(\frac{3\pi}{2} + 2\pi x + 2\pi n\right) = \cos(3\pi x)$, leading to the equations $3\pi x = \frac{\pi}{2} - 2\pi x + 2\pi n$ and $3\pi x = \frac{3\pi}{2} + 2\pi x + 2\pi n$. The first equation has solutions in the interval of .10, .50, 1.90, 1.30, and 1.70. The second equation has a single solution in the interval of 1.5. The sum of all these <i>x</i> -values is 6 .
28.	For integer <i>n</i> , the area bounded by the graph of Greatest Integer function and the <i>x</i> -axis on the interval $[n, n + 2]$ consists of two rectangles of dimensions $1 \times (n + 1)$ and $1 \times n$. Thus, $\int_{n}^{n+2} f(x) dx = n + (n + 1) = 2n + 1$, making $\sum_{n=0}^{9} (2n + 1) = 100$.
29.	Use the Disc Method for the x-axis rotation and use the Shell Method for the y-axis rotation. This approach yields the equation $\pi \int_0^1 (kx^2)^2 dx = 2\pi \int_0^1 x(kx^2) dx$,

	having solution $k = 5/2$. Thus, $8k = 20$.
30.	We have $\sqrt{A^2} + \sqrt{B + D + 10} + \sqrt{C} = -36 + \sqrt{6 + 20 + 10} + \sqrt{100} = 52.$
	The coordinates of triangle <i>POQ</i> are $(0, 0)$, $(5, 0)$, and (x, y) , where $x^2 + y^2 = 36$.
	The centroid of <i>POQ</i> is the average of the coordinates, or $\left(\frac{x+5}{3}, \frac{y}{3}\right)$. Suppose
31	$\left(\frac{x+5}{3}, \frac{y}{3}\right) = (a, b)$ so that $\frac{x+5}{3} = a$ and $\frac{y}{3} = b$. Solving each equation for x and y ,
51.	squaring both sides, and adding the equations, we arrive at $(3a - 5)^2 + (3b)^2 =$
	36, or $\left(a - \frac{5}{3}\right)^2 + b^2 = 4$, an equation of a circle of radius 2. The desired area is
	4π.
	We want the angle opposite the side with length 6. Let this angle equal θ . By the
32.	Law of Cosines, $\cos \theta = \frac{7^2 + 8^2 - 6^2}{2 \times 7 \times 8} = \frac{11}{16}$. Thus, $m + n = 11 + 16 = 27$.
33	The integral is equal to $\arctan \infty - \arctan 0 = \frac{\pi}{2}$
55.	
34.	Let $y = \sqrt{\frac{1-x}{x}}$, so that $x = \frac{1}{1+y^2}$. We have $\int_0^1 y dx = \int_0^\infty x dy = \int_0^\infty \frac{1}{1+y^2} dy = \frac{\pi}{2}$, per
	the solution on problem #33.
35	Since $C = D$ the desired quantity equals 0
001	
	The equation is of the form $M = PDP^{-1}$, where <i>D</i> is a diagonal matrix. Therefore,
36.	we have $M^{10} = (PDP^{-1})^{10} = PD^{10}P^{-1}$. Notice that $D^{10} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^{10} =$
	$\begin{bmatrix} (-1)^{10} & 0 \\ 0 & 1^{10} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity matrix <i>I</i> . Thus, $M^{10} = PD^{10}P^{-1} = PIP^{-1} =$
	$PP^{-1} = I$. The sum of the elements of the 2 × 2 identity matrix is 2 .
37.	Note that $\frac{x}{100\pi} - 1$ is less than -1 whenenver $x < 0$ and greater than 1 when

	$x > 200\pi$. Thus, the two graphs will have intersection points on the interval
	$x \in [0, 200\pi]$, in which the graph of $y = \sin x$ will exhibit 100 full cycles. We
	subtract 1 from this total to account for the double-counting of intersection points
	in the middle of the interval. The answer is 199 .
	Notice that $f(0) = \int_0^{\pi} \sin t dt = 2$ and $f(1) = \int_0^{\pi} t \sin t dt = \pi \approx 3.14159$. Since <i>f</i>
28	is a continuous function, by the Intermediate Value Theorem, it will attain all
50.	values in between 2 and π , inclusive, on the interval $x \in [0, 1]$. All the elements in
	the set are contained in this interval; therefore the probability is 1 .
	Choose the point on the graph of $y = x^2$ whose tangent line is parallel to the line
39.	segment AB. The slope of AB is $\frac{-10-0}{2} = 5$ making $2c = 5$ or $c = 5/2$
	segment <i>nD</i> . The slope of <i>nD</i> is $_{0-2}^{-2}$ = 5, making $2e = 5, or e = 5/2$.
	(5)
40.	We have $2AD + B + C = 2(2)\left(\frac{3}{2}\right) + 199 + 1 = 210$.
41.	
	Starting with quadrilateral ABCD, draw auxiliary line segments to obtain the
	diagram above, where AF and DE are perpendicular to EG, which contains the
	points <i>C</i> , <i>B</i> , and <i>F</i> . Triangle <i>ABF</i> is a 45-45-90 triangle, so $AF = BF = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}$.
	Triangle <i>DCE</i> is a 30-60-90 triangle, so $EC = 3$ and $DE = 3\sqrt{3}$. Triangles <i>AFG</i> and

	<i>DGE</i> are similar. Therefore, $\frac{AF}{DE} = \frac{FG}{EG}$, or $\frac{\sqrt{3}}{3\sqrt{3}} = \frac{FG}{3+5-\sqrt{3}+\sqrt{3}+FG} = \frac{FG}{8+FG}$, or $FG = 4$.
	Moreover, $AG = \sqrt{AF^2 + FG^2} = \sqrt{\sqrt{3}^2 + 4^2} = \sqrt{19}$. Based on the earlier equation,
	triangles <i>AFG</i> and <i>DGE</i> are in a 3-to-1 linear ratio, so $AD = 2 \times AG = 2\sqrt{19}$.
	Perhaps the fastest way to do this problem is to know in advance that $\cos \frac{\pi}{5} =$
	$\frac{1+\sqrt{5}}{4}$; hence the minimal polynomial will also have $\frac{1-\sqrt{5}}{4}$ as a root. The two roots
42.	have a sum of $\frac{1+\sqrt{5}+1-\sqrt{5}}{4} = \frac{1}{2}$ and product of $\left(\frac{1+\sqrt{5}}{4}\right)\left(\frac{1-\sqrt{5}}{4}\right) = \frac{1-5}{16} = \frac{-1}{4}$, leading to a
	minimal polynomial of $P(x) = x^2 - \frac{1}{2}x - \frac{1}{4}$ or after making all the coefficients
	integers, $P(x) = 4x^2 - 2x - 1$. Hence, $P(-1) = 4(-1)^2 - 2(-1) - 1 = 4 + 2 - 2$
	1 = 5 .
	By the Triple-Angle Formula, $f(x) = \frac{2}{3^6}\cos(3x)$. With every application of the
	Chain Rule, a 3 from the inside of the cosine function "comes out," multiplicatively.
	Therefore, it will take at least six differentiations to whittle down the 3 ⁶ in the
	denominator. Multiplicative constant coefficients aside, the derivatives of the
43.	trigonometric functions cycle with a period of 4. Therefore, we have $\frac{d^6f}{dx^6}$ =
	$-2\cos(3x)$. But this function evaluated at 0 does not produce a positive integer. If
	we differentiate two more times we obtain $\frac{d^8f}{dx^8} = 18\cos(3x)$, and this works. The
	answer is $n^2 = 64$.
	Let the degree of $D(x)$ equal <i>n</i> . Expanding the Quotient Dule to the left side of the
44.	Let the degree of $P(x)$ equal <i>n</i> . Expanding the Quotient Kule to the left side of the $P'(x)(x^4+1) - P(x)(4x^3)$
	equation yields $\frac{P(x)(x+1)P(x)(x+2)}{(x^4+1)^2}$. Therefore, $P'(x)(x^4+1) - P(x)(4x^3) =$
	$3x^4 - 1$. Notice that the left side of this equation has degree max($n - 1 + 4$, $n + 3x^4 - 1$).
	3) = n + 3 and the right side has degree 4. Therefore, n = 1 and $P(x)$ is a linear
	function, say, $P(x) = mx + b$. If we let $x = 0$ in the equation $m(x^4 + 1) - (mx + 1$
	b)(4 x^3) = 3 x^4 – 1, we obtain m = –1. Using this value as well as x = 1 in the

	equation, we obtain $b = 0$. Thus, $P(15) = -15$.
45.	We have $A^2 + B^2 + (C - D + 1)^2 = (2\sqrt{19})^2 + 5^2 + (6415 + 1)^2 = 6501.$
46.	The numbers being plugged into the function are the first five positive perfect numbers. Recall that even perfect numbers have the form $g(x) = 2^{x-1}(2^x - 1)$, where $2^x - 1$ is prime; by inspection, the five smallest positive values of x which makes this true are 2, 3, 5, 7, and 13. We have $f(g(x)) = \log_2(1 + \sqrt{8(2^{x-1}(2^x - 1)) + 1}) - 2 = x - 1$. Thus, the answer is (2 - 1) + (3 - 1) + (5 - 1) + (7 - 1) + (13 - 1) = 25.
47.	Suppose $\csc x = \cot x$. This leads to $\cos x = 1$ and $\sin x = 0$, hence $\csc x$ would be undefined and a triangle cannot be formed. Now suppose $\sec x = \csc x$. This leads to $\cos x = \sin x = 1/\sqrt{2}$, making a triangle with side lengths $\sqrt{2}$, $\sqrt{2}$, and 1. In particular, $\csc x = \sqrt{2}$. For the third case, $\sec x = \cot x$, we get the quadratic equation $\sin x = \cos^2 x = 1 - \sin^2 x$, which has the positive solution $\sin x = \frac{2}{1+\sqrt{5}}$, or $\csc x = \frac{1+\sqrt{5}}{2}$. This is the largest possible value of $\csc x$.
48.	The function is a constant, with derivative 0 .
49.	The function is a constant, having integral of $3\pi^2(3-0) = 9\pi^2$.
50.	We have $A + BC + \cos \sqrt{D} = 25 + B(0) + \cos 3\pi = 25 - 1 = 24$.