Solutions:

1. E
 \[x < -1 \text{ or } x > 1, x \neq 2 \]
 \[
 \frac{(x^2+3x+2)(x-1)}{(x+2)} = \frac{(x+1)(x+2)(x-1)}{x+2} = (x + 1)(x - 1). \]
 Setting this expression greater than zero means that \(x > 1 \) or \(x < -1 \). But \(x \) also must not equal 2.

2. B
 \[4\log_2 x + 2 + \log_4 x = 11 \]
 \[4\log_2 x + \frac{1}{2}\log_2 x = 9 \]
 \[9 \]
 \[\frac{9}{2} \log_2 x = 9 \]
 \[\log_2 x = 2 \]
 \[x = 4 \]

3. A
 The rectangle will have dimension \(x \) by \(y \), where the perimeter of fence is \(2x+y \). Since this equals 10, \(y=10-2x \). The area of the rectangle is \(A=xy=x(10-2x)=10x-2x^2 \). This is a parabola opening downward, and it has vertex at \(x=5/2 \), implying that \(y=5 \). The area, then, is \(5\times5/2=25/2=12.5 \), which is closest to 10.

4. B
 80% of 4 miles = 3.2 miles of easy trail; this will take 1.6 hours = 96 minutes
 20% of 4 miles = .8 miles of difficult trail; this will take 32 minutes
 In total, we have 128 minutes, which means that they should leave by 11:52

5. C
 Since the triangle is isosceles, two of the sides must be equal. Setting the sides pairwise equal gives:
 Case 1: \(2x=x+6 \), so \(x=6 \). This gives sides of 12,12,7, which is acceptable.
 Case 2: \(2x=x+1 \), so \(x=1 \). This would give a triangle of sides 2,2,7 - not a possible triangle.
 Case 3: \(x+6=x+1 \), which is not possible.

6. D
 \[\sqrt{3^2 + 4^2 + \sqrt{x^2 + 1}} = 7 \]
 \[5 + \sqrt{x^2 + 1} = 7 \]
 \[\sqrt{x^2 + 1} = 2 \]
 \[x^2 + 1 = 4 \]
 \[x^2 = 3 \]
 \[x = \sqrt{3} \text{ or } -\sqrt{3} \], of which we take the positive value.
7. D

\[(1 - i)^2 = 1 - 2i - 1 = -2i, \text{ so } (1 - i)^6 = (-2i)^3 = 8i\]

8. D

\[x^2 - 4x + 4y^2 + 24y + 36 = 0\]
\[x^2 - 4x + 4 + 4(y^2 + 6y + 9) = 4\]
\[(x - 2)^2 + 4(y + 3)^2 = 4\]
\[\frac{(x-2)^2}{4} + (y + 3)^2 = 1. \text{ This describes an ellipse.}\]

9. A

The length of the major axis is equal to 2a. In the above conic, \(a^2=4\), so \(a=2\); thus, the length of the major axis is 4.

10. B

\[\sum_{n=1}^{127} \log_2 \frac{n}{n+1} = \log_2 \frac{1}{2} + \log_2 \frac{2}{3} + \log_2 \frac{3}{4} + \ldots + \log_2 \frac{127}{128}\]

[\[= \log_2 \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \ldots \cdot \frac{127}{128} \right) = \log_2 \frac{1}{128} = -7\]

11. E

DE must equal the difference of BD and BE, so DE = x+4. Thus,
\[(x)(3x) = (x+6)(x+4)\]
\[3x^2 = x^2 + 10x + 24\]
\[2x^2 - 10x - 24 = 0\]
\[x^2 - 5x - 12 \rightarrow x = \frac{5+\sqrt{73}}{2} \text{ (since } x>0)\]

12. C

Area = \(\frac{1}{2} \times \text{ Apothem} \times \text{ Perimeter}\), so
\[a = 2 \times \frac{A}{P} = 2 \times \frac{(\log_2 3)^2 + \log_2 243 + 4}{\log_2 9 + 2} = 2 \times \frac{(\log_2 3 + 1)(\log_2 3 + 4)}{2(\log_2 3 + 1)}\]
\[= \log_2 3 + 4\]

13. E

The x value for which the function is at a minimum is given by \(-\frac{b}{2a} = 2\), so the minimum value is 12-24+4 = -8.
14. D

These inequalities form a trapezoid. The line \(y \geq \frac{x}{2} \) intercepts the upper and lower boundaries of the region at (4,2) and (10,5). The height of the trapezoid is 3. Thus, the area of the trapezoid = \(\frac{1}{2} \times 3 \times (4 + 10) = \frac{1}{2} \times 3 \times 14 = 21 \).

15. D

The difference in their speeds is \((4x+3)-(3x+2) = x+1\) miles per hour. Thus, the time taken for Ankie to make up the half mile is \(\frac{5}{x+1} = \frac{1}{2x+2} \).

16. A

\[2l + 2w = 1 + 4lw \]
\[2l + l = 1 + 2l^2 \]
\[3l = 2l^2 + 1 \]
\[0 = 2l^2 - 3l + 1 = (2l - 1)(l - 1) \rightarrow l = 1 \text{ is longest} \]

17. B

\[.45 = \frac{45}{99} \] since it is an infinite geometric sequence with first term = .45 and ratio \(= \frac{1}{100} \). \(\frac{45}{99} = \frac{5}{11} \)

18. E

Using log rules, we simplify the equation to \[\ln \left(\frac{5x}{5} \right) - \ln(x + 1) = \ln(x) - \ln(x + 1) = \ln \left(\frac{x}{x+1} \right) = 4 \]. So \(e^4 = \frac{x}{x+1} \) and \(x = \frac{e^4}{1-e^4} \), but this is negative, so there is no solution.

19. B

\[G(s) = \frac{(2s+1)}{1+\frac{K}{2s+1}} = \frac{(2s+1)^2}{2s+1+K} \]. The denominator is just \(2s+(1+K) \); its roots are given by
\[2s+(1+K) = 0 \rightarrow s = \frac{1}{2}(-K - 1) \]. We want this to be greater than zero, which will be true when \(0 < -\frac{K}{2} - \frac{1}{2} \rightarrow K < -\frac{1}{2} \rightarrow K < -1 \)

20. B

The population will double six times in three hours, so you have \(5 \times (2)^6 = 320 \)

21. D
\[A = k \cdot B \cdot C \]. We can solve for \(k \) using the values given: \(5 = k \cdot 4 \cdot 1 \rightarrow k = \frac{5}{4} \).

So \(A = \frac{5}{4} \cdot 2 \cdot 8 = 20 \).

22. D

\(\text{III only: } * \text{ is not commutative, since } A*B=-(B*A). * \text{ is also not associative: for example, } (1*2)*2 = -3*2=5, \text{ while } 1*(2*2)=1*0=1. \) The final statement is equal to \((0)*2=-4 \)

23. E

Multiplying the two matrices, we get the following equations: \(x^2 + 2 = 3 \) and \(5x^3 = -5 \)

\[\Rightarrow X=-1 \]

24. E

The area of a hexagon is \(\frac{3s^2\sqrt{3}}{2} = 18\sqrt{3} \)

25. A

The cylinder with a height of 5 and volume of 30 has a radius of \(r \), found by \(V = \pi r^2 \cdot h \rightarrow 30\pi = \pi \cdot r^2 \cdot 5 \rightarrow r = \sqrt{6}. \) The volume of the sphere with a radius of this \(r \) is \(\frac{4}{3} \cdot \pi \cdot \sqrt{6} = 8\pi \sqrt{6} \)

26. B

\[\text{volume} = l \cdot w \cdot h = 2 \cdot (12 - 4) \cdot (16 - 4) = 2 \cdot 8 \cdot 12 = 192 \]

27. B

\((A \cup \bar{A})\) is simply everything, so the intersection will just be the second term.

The union of everything that is not in \(B \) but in \(A \) with everything that is in both \(A \) and \(B \) is just \(A \).

28. C

You must make up a half a mile, and the difference in your speeds is 2 mph. It will thus take you a quarter of an hour to catch up, or 15 minutes.

29. C

The \(x \) value of the maximum is given by \(-\frac{b}{2a} = -\frac{6}{-4} = \frac{3}{2}. \) Plugging this in to find \(y \) gives \(-2 \cdot \frac{9}{4} + 9 - 13 = -8.5 \)
30. B

In standard form, the equation of this ellipse is $1 = \frac{b y^2}{9a} + \frac{x^2}{9}$. We want the denominator of the y^2 term to be 16, so that our major radius is 4. Thus, $\frac{9a}{b} = 16 \rightarrow \frac{a}{b} = \frac{16}{9}$.